Coresets for 1-Center in 𝓁₁ Metrics

Authors Amir Carmel , Chengzhi Guo , Shaofeng H.-C. Jiang , Robert Krauthgamer



PDF
Thumbnail PDF

File

LIPIcs.ITCS.2025.28.pdf
  • Filesize: 0.87 MB
  • 20 pages

Document Identifiers

Author Details

Amir Carmel
  • Weizmann Institute of Science, Rehovot, Israel
Chengzhi Guo
  • Peking University, China
Shaofeng H.-C. Jiang
  • Peking University, China
Robert Krauthgamer
  • Weizmann Institute of Science, Rehovot, Israel

Cite As Get BibTex

Amir Carmel, Chengzhi Guo, Shaofeng H.-C. Jiang, and Robert Krauthgamer. Coresets for 1-Center in 𝓁₁ Metrics. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 28:1-28:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.ITCS.2025.28

Abstract

We explore the applicability of coresets - a small subset of the input dataset that approximates a predefined set of queries - to the 1-center problem in 𝓁₁ spaces. This approach could potentially extend to solving the 1-center problem in related metric spaces, and has implications for streaming and dynamic algorithms. 
We show that in 𝓁₁, unlike in Euclidean space, even weak coresets exhibit exponential dependency on the underlying dimension. Moreover, while inputs with a unique optimal center admit better bounds, they are not dimension independent. We then relax the guarantee of the coreset further, to merely approximate the value (optimal cost of 1-center), and obtain a dimension-independent coreset for every desired accuracy ε > 0. Finally, we discuss the broader implications of our findings to related metric spaces, and show explicit implications to Jaccard and Kendall’s tau distances.

Subject Classification

ACM Subject Classification
  • Theory of computation → Sketching and sampling
  • Theory of computation → Streaming models
Keywords
  • clustering
  • k-center
  • minimum enclosing balls
  • coresets
  • 𝓁₁ norm
  • Kendall’s tau
  • Jaccard metric

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Amir Abboud, MohammadHossein Bateni, Vincent Cohen-Addad, Karthik C. S., and Saeed Seddighin. On complexity of 1-center in various metrics. In APPROX/RANDOM, volume 275 of LIPIcs, pages 1:1-1:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.1.
  2. Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. Approximating extent measures of points. J. ACM, 51(4):606-635, 2004. URL: https://doi.org/10.1145/1008731.1008736.
  3. Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. Geometric approximation via coresets. In Combinatorial and computational geometry, volume 52 of MSRI Publications, chapter 1, pages 1-30. Cambridge University Press, 2005. Google Scholar
  4. Sepideh Aghamolaei and Mohammad Ghodsi. A composable coreset for k-center in doubling metrics. In CCCG, pages 165-171, 2018. URL: http://www.cs.umanitoba.ca/%7Ecccg2018/papers/session4A-p2.pdf.
  5. Christian Bachmaier, Franz J. Brandenburg, Andreas Gleißner, and Andreas Hofmeier. On the hardness of maximum rank aggregation problems. J. Discrete Algorithms, 31:2-13, 2015. URL: https://doi.org/10.1016/j.jda.2014.10.002.
  6. René Brandenberg and Stefan König. No dimension-independent core-sets for containment under homothetics. Discrete & Computational Geometry, 49(1):3-21, 2013. URL: https://doi.org/10.1007/s00454-012-9462-0.
  7. Mihai Bădoiu and Kenneth L. Clarkson. Optimal core-sets for balls. Comput. Geom., 40(1):14-22, 2008. URL: https://doi.org/10.1016/j.comgeo.2007.04.002.
  8. Mihai Bădoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-sets. In STOC, pages 250-257. ACM, 2002. URL: https://doi.org/10.1145/509907.509947.
  9. Marc Bury, Michele Gentili, Chris Schwiegelshohn, and Mara Sorella. Polynomial time approximation schemes for all 1-center problems on metric rational set similarities. Algorithmica, 83(5):1371-1392, 2021. URL: https://doi.org/10.1007/s00453-020-00787-3.
  10. Matteo Ceccarello, Andrea Pietracaprina, and Geppino Pucci. Solving k-center clustering (with outliers) in MapReduce and streaming, almost as accurately as sequentially. Proc. VLDB Endow., 12(7):766-778, 2019. URL: https://doi.org/10.14778/3317315.3317319.
  11. Diptarka Chakraborty, Debarati Das, and Robert Krauthgamer. Approximating the median under the ulam metric. In SODA, pages 761-775. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.48.
  12. Diptarka Chakraborty, Debarati Das, and Robert Krauthgamer. Clustering permutations: New techniques with streaming applications. In ITCS, volume 251 of LIPIcs, pages 31:1-31:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.ITCS.2023.31.
  13. Diptarka Chakraborty, Kshitij Gajjar, and Agastya Vibhuti Jha. Approximating the center ranking under ulam. In FSTTCS, volume 213 of LIPIcs, pages 12:1-12:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.FSTTCS.2021.12.
  14. Timothy M. Chan. Faster core-set constructions and data-stream algorithms in fixed dimensions. Computational Geometry, 35(1):20-35, 2006. URL: https://doi.org/10.1016/j.comgeo.2005.10.002.
  15. Ke Chen. On coresets for k-median and k-means clustering in metric and euclidean spaces and their applications. SIAM Journal on Computing, 39(3):923-947, 2009. URL: https://doi.org/10.1137/070699007.
  16. Flavio Chierichetti, Ravi Kumar, Sandeep Pandey, and Sergei Vassilvitskii. Finding the jaccard median. In SODA, pages 293-311. SIAM, 2010. URL: https://doi.org/10.1137/1.9781611973075.25.
  17. Michael B. Cohen, Yin Tat Lee, Gary L. Miller, Jakub Pachocki, and Aaron Sidford. Geometric median in nearly linear time. In STOC, pages 9-21. ACM, 2016. URL: https://doi.org/10.1145/2897518.2897647.
  18. Vincent Cohen-Addad, David Saulpic, and Chris Schwiegelshohn. A new coreset framework for clustering. In STOC, pages 169-182. ACM, 2021. URL: https://doi.org/10.1145/3406325.3451022.
  19. Matan Danos. Coresets for clustering by uniform sampling and generalized rank aggregation. Master’s thesis, Weizmann Institute of Science, 2021. Google Scholar
  20. Mark de Berg, Leyla Biabani, and Morteza Monemizadeh. k-center clustering with outliers in the MPC and streaming model. In IPDPS, pages 853-863. IEEE, 2023. URL: https://doi.org/10.1109/IPDPS54959.2023.00090.
  21. Dan Feldman. Core-sets: An updated survey. WIREs Data Mining and Knowledge Discovery, 10(1):e1335, 2020. URL: https://doi.org/10.1002/widm.1335.
  22. Dan Feldman and Michael Langberg. A unified framework for approximating and clustering data. In STOC, pages 569-578. ACM, 2011. URL: https://doi.org/10.1145/1993636.1993712.
  23. Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Computer Science, 38:293-306, 1985. URL: https://doi.org/10.1016/0304-3975(85)90224-5.
  24. Peter M Gruber and Jörg M Wills. Handbook of convex geometry, Volume B. North-Holland, 1993. Google Scholar
  25. Claire Kenyon-Mathieu and Warren Schudy. How to rank with few errors. In STOC, pages 95-103. ACM, 2007. URL: https://doi.org/10.1145/1250790.1250806.
  26. Ming Li, Bin Ma, and Lusheng Wang. On the closest string and substring problems. J. ACM, 49(2):157-171, 2002. URL: https://doi.org/10.1145/506147.506150.
  27. Bin Ma and Xiaoming Sun. More efficient algorithms for closest string and substring problems. SIAM Journal on Computing, 39(4):1432-1443, 2010. URL: https://doi.org/10.1137/080739069.
  28. Alexander Munteanu and Chris Schwiegelshohn. Coresets-methods and history: A theoreticians design pattern for approximation and streaming algorithms. Künstliche Intell., 32(1):37-53, 2018. URL: https://doi.org/10.1007/s13218-017-0519-3.
  29. François Nicolas and Eric Rivals. Hardness results for the center and median string problems under the weighted and unweighted edit distances. J. Discrete Algorithms, 3(2-4):390-415, 2005. URL: https://doi.org/10.1016/j.jda.2004.08.015.
  30. Rina Panigrahy. Minimum enclosing polytope in high dimensions. CoRR, cs.CG/0407020, 2004. URL: https://doi.org/10.48550/arXiv.CS/0407020.
  31. Jeff M. Phillips. Coresets and sketches. In Handbook of discrete and computational geometry, chapter 48, pages 1269-1288. Chapman and Hall/CRC, 3rd edition, 2017. URL: https://doi.org/10.1201/9781315119601.
  32. Alvin Yan Hong Yao and Diptarka Chakraborty. Approximate maximum rank aggregation: Beyond the worst-case. In FSTTCS, volume 284 of LIPIcs, pages 12:1-12:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.FSTTCS.2023.12.
  33. Hai Yu, Pankaj K. Agarwal, Raghunath Poreddy, and Kasturi R. Varadarajan. Practical methods for shape fitting and kinetic data structures using coresets. Algorithmica, 52(3):378-402, 2008. URL: https://doi.org/10.1007/s00453-007-9067-9.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail