LIPIcs.ITCS.2025.42.pdf
- Filesize: 0.87 MB
- 23 pages
A nearest neighbor representation of a Boolean function f is a set of vectors (anchors) labeled by 0 or 1 such that f(x) = 1 if and only if the closest anchor to x is labeled by 1. This model was introduced by Hajnal, Liu and Turán [2022], who studied bounds on the minimum number of anchors required to represent Boolean functions under different choices of anchors (real vs. Boolean vectors) as well as the analogous model of k-nearest neighbors representations. We initiate a systematic study of the representational power of nearest and k-nearest neighbors through Boolean circuit complexity. To this end, we establish a close connection between Boolean functions with polynomial nearest neighbor complexity and those that can be efficiently represented by classes based on linear inequalities - min-plus polynomial threshold functions - previously studied in relation to threshold circuits. This extends an observation of Hajnal et al. [2022]. Next, we further extend the connection between nearest neighbor representations and circuits to the k-nearest neighbors case. As an outcome of these connections we obtain exponential lower bounds on the k-nearest neighbors complexity of explicit n-variate functions, assuming k ≤ n^{1-ε}. Previously, no superlinear lower bound was known for any k > 1. At the same time, we show that proving superpolynomial lower bounds for the k-nearest neighbors complexity of an explicit function for arbitrary k would require a breakthrough in circuit complexity. In addition, we prove an exponential separation between the nearest neighbor and k-nearest neighbors complexity (for unrestricted k) of an explicit function. These results address questions raised by [Hajnal et al., 2022] of proving strong lower bounds for k-nearest neighbors and understanding the role of the parameter k. Finally, we devise new bounds on the nearest neighbor complexity for several families of Boolean functions.
Feedback for Dagstuhl Publishing