Space Complexity of Minimum Cut Problems in Single-Pass Streams

Authors Matthew Ding , Alexandro Garces, Jason Li , Honghao Lin , Jelani Nelson , Vihan Shah , David P. Woodruff



PDF
Thumbnail PDF

File

LIPIcs.ITCS.2025.43.pdf
  • Filesize: 0.89 MB
  • 23 pages

Document Identifiers

Author Details

Matthew Ding
  • University of California, Berkeley, CA, USA
Alexandro Garces
  • Massachusetts Institute of Technology, Cambridge, MA, USA
Jason Li
  • Carnegie Mellon University, Pittsburgh, PA, USA
Honghao Lin
  • Carnegie Mellon University, Pittsburgh, PA, USA
Jelani Nelson
  • University of California, Berkeley, CA, USA
Vihan Shah
  • University of Waterloo, Canada
David P. Woodruff
  • Carnegie Mellon University, Pittsburgh, PA, USA

Acknowledgements

The authors would like to thank the ITCS 2025 reviewers for their anonymous feedback. Alexandro Garces and Vihan Shah are extremely grateful to Sepehr Assadi for many helpful conversations throughout the project. They also thank the organizers of DIMACS REU in Summer 2023, in particular Lazaros Gallos, for initiating this collaboration and for all their help and encouragement along the way.

Cite As Get BibTex

Matthew Ding, Alexandro Garces, Jason Li, Honghao Lin, Jelani Nelson, Vihan Shah, and David P. Woodruff. Space Complexity of Minimum Cut Problems in Single-Pass Streams. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 43:1-43:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.ITCS.2025.43

Abstract

We consider the problem of finding a minimum cut of a weighted graph presented as a single-pass stream. While graph sparsification in streams has been intensively studied, the specific application of finding minimum cuts in streams is less well-studied. To this end, we show upper and lower bounds on minimum cut problems in insertion-only streams for a variety of settings, including for both randomized and deterministic algorithms, for both arbitrary and random order streams, and for both approximate and exact algorithms. One of our main results is an Õ(n/ε) space algorithm with fast update time for approximating a spectral cut query with high probability on a stream given in an arbitrary order. Our result breaks the Ω(n/ε²) space lower bound required of a sparsifier that approximates all cuts simultaneously. Using this result, we provide streaming algorithms with near optimal space of Õ(n/ε) for minimum cut and approximate all-pairs effective resistances, with matching space lower-bounds. The amortized update time of our algorithms is Õ(1), provided that the number of edges in the input graph is at least (n/ε²)^{1+o(1)}. We also give a generic way of incorporating sketching into a recursive contraction algorithm to improve the post-processing time of our algorithms. In addition to these results, we give a random-order streaming algorithm that computes the exact minimum cut on a simple, unweighted graph using Õ(n) space. Finally, we give an Ω(n/ε²) space lower bound for deterministic minimum cut algorithms which matches the best-known upper bound up to polylogarithmic factors.

Subject Classification

ACM Subject Classification
  • Theory of computation → Streaming, sublinear and near linear time algorithms
Keywords
  • minimum cut
  • approximate
  • random order
  • lower bound

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Noga Alon. On the edge-expansion of graphs. Combinatorics, Probability and Computing, 6(2):145-152, 1997. URL: http://journals.cambridge.org/action/displayAbstract?aid=46517.
  2. Alexandr Andoni, Jiecao Chen, Robert Krauthgamer, Bo Qin, David P. Woodruff, and Qin Zhang. On sketching quadratic forms. In Madhu Sudan, editor, Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science (ITCS), pages 311-319, 2016. URL: https://doi.org/10.1145/2840728.2840753.
  3. Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab Mirrokni, and Cliff Stein. Coresets meet edcs: algorithms for matching and vertex cover on massive graphs. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1616-1635. SIAM, 2019. URL: https://doi.org/10.1137/1.9781611975482.98.
  4. Sepehr Assadi and Soheil Behnezhad. Beating Two-Thirds For Random-Order Streaming Matching. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021), volume 198 of Leibniz International Proceedings in Informatics (LIPIcs), pages 19:1-19:13, Dagstuhl, Germany, 2021. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ICALP.2021.19.
  5. Sepehr Assadi and Aditi Dudeja. A Simple Semi-Streaming Algorithm for Global Minimum Cuts, pages 172-180. Society for Industrial and Applied Mathematics, January 2021. URL: https://doi.org/10.1137/1.9781611976496.19.
  6. Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-Ramanujan sparsifiers. SIAM J. Comput., 41(6):1704-1721, 2012. URL: https://doi.org/10.1137/090772873.
  7. András A. Benczúr and David R. Karger. Approximating s-t minimum cuts in Õ(n^2) time. In Gary L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 47-55. ACM, 1996. URL: https://doi.org/10.1145/237814.237827.
  8. András A. Benczúr and David R. Karger. Randomized approximation schemes for cuts and flows in capacitated graphs. SIAM J. Comput., 44(2):290-319, 2015. URL: https://doi.org/10.1137/070705970.
  9. Aaron Bernstein. Improved bounds for matching in random-order streams. Theory of Computing Systems, pages 1-15, 2023. Google Scholar
  10. Vladimir Braverman, Petros Drineas, Cameron Musco, Christopher Musco, Jalaj Upadhyay, David P. Woodruff, and Samson Zhou. Near optimal linear algebra in the online and sliding window models. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 517-528. IEEE, 2020. URL: https://doi.org/10.1109/FOCS46700.2020.00055.
  11. Charles Carlson, Alexandra Kolla, Nikhil Srivastava, and Luca Trevisan. Optimal lower bounds for sketching graph cuts. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2565-2569. SIAM, 2019. URL: https://doi.org/10.1137/1.9781611975482.158.
  12. Amit Chakrabarti, Graham Cormode, and Andrew McGregor. Robust lower bounds for communication and stream computation. Theory of Computing, 12(10):1-35, 2016. URL: https://doi.org/10.4086/toc.2016.v012a010.
  13. Amit Chakrabarti, Prantar Ghosh, Andrew McGregor, and Sofya Vorotnikova. Vertex ordering problems in directed graph streams. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1786-1802. SIAM, 2020. URL: https://doi.org/10.1137/1.9781611975994.109.
  14. Timothy Chu, Yu Gao, Richard Peng, Sushant Sachdeva, Saurabh Sawlani, and Junxing Wang. Graph sparsification, spectral sketches, and faster resistance computation, via short cycle decompositions. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 361-372. IEEE Computer Society, 2018. URL: https://doi.org/10.1109/FOCS.2018.00042.
  15. Michael B. Cohen, Cameron Musco, and Jakub Pachocki. Online row sampling. Theory of Computing, 16(15):1-25, 2020. URL: https://doi.org/10.4086/toc.2020.v016a015.
  16. Artur Czumaj, Hendrik Fichtenberger, Pan Peng, and Christian Sohler. Testable properties in general graphs and random order streaming. arXiv preprint, 2019. URL: https://arxiv.org/abs/1905.01644.
  17. Matthew Ding, Alexandro Garces, Jason Li, Honghao Lin, Jelani Nelson, Vihan Shah, and David P. Woodruff. Space complexity of minimum cut problems in single-pass streams, 2024. URL: https://arxiv.org/abs/2412.01143.
  18. Alireza Farhadi, Mohammad Taghi Hajiaghayi, Tung Mah, Anup Rao, and Ryan A Rossi. Approximate maximum matching in random streams. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1773-1785. SIAM, 2020. Google Scholar
  19. Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. Weighted matchings via unweighted augmentations. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, pages 491-500, 2019. URL: https://doi.org/10.1145/3293611.3331603.
  20. Anna C. Gilbert, Yi Li, Ely Porat, and Martin J. Strauss. Approximate sparse recovery: Optimizing time and measurements. SIAM J. Comput., 41(2):436-453, 2012. URL: https://doi.org/10.1137/100816705.
  21. Sudipto Guha and Andrew McGregor. Stream order and order statistics: Quantile estimation in random-order streams. SIAM Journal on Computing, 38(5):2044-2059, 2009. URL: https://doi.org/10.1137/07069328X.
  22. Diba Hashemi and Weronika Wrzos-Kaminska. Weighted matching in the random-order streaming and robust communication models. arXiv preprint, 2024. URL: https://doi.org/10.48550/arXiv.2408.15434.
  23. Julien M. Hendrickx, Karl Henrik Johansson, Raphaël M. Jungers, Henrik Sandberg, and Kin Cheong Sou. Efficient computations of a security index for false data attacks in power networks. IEEE Transactions on Automatic Control, 59(12):3194-3208, 2014. URL: https://doi.org/10.1109/TAC.2014.2351625.
  24. Arun Jambulapati and Aaron Sidford. Efficient õ (n/eps) spectral sketches for the laplacian and its pseudoinverse. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2487-2503. SIAM, 2018. Google Scholar
  25. Michael Kapralov. Space lower bounds for approximating maximum matching in the edge arrival model. In Proceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '21, pages 1874-1893, USA, 2021. Society for Industrial and Applied Mathematics. URL: https://doi.org/10.1137/1.9781611976465.112.
  26. Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size from random streams. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pages 734-751. SIAM, 2014. URL: https://doi.org/10.1137/1.9781611973402.55.
  27. Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco, and Aaron Sidford. Single pass spectral sparsification in dynamic streams. SIAM J. Comput., 46(1):456-477, 2017. URL: https://doi.org/10.1137/141002281.
  28. Michael Kapralov, Aida Mousavifar, Cameron Musco, Christopher Musco, Navid Nouri, Aaron Sidford, and Jakab Tardos. Fast and space efficient spectral sparsification in dynamic streams. In Proceedings of the Thirty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '20, pages 1814-1833, USA, 2020. Society for Industrial and Applied Mathematics. URL: https://doi.org/10.1137/1.9781611975994.111.
  29. David R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46-76, 2000. URL: https://doi.org/10.1145/331605.331608.
  30. David R. Karger and Matthew S. Levine. Random sampling in residual graphs. In John H. Reif, editor, Proceedings on 34th Annual ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec, Canada, pages 63-66. ACM, 2002. URL: https://doi.org/10.1145/509907.509918.
  31. David R. Karger and Clifford Stein. A new approach to the minimum cut problem. J. ACM, 43(4):601-640, 1996. URL: https://doi.org/10.1145/234533.234534.
  32. Christian Konrad. A simple augmentation method for matchings with applications to streaming algorithms. In 43rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2018, pages 74-1. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl Publishing, 2018. Google Scholar
  33. Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in semi-streaming with few passes. In International Workshop on Approximation Algorithms for Combinatorial Optimization, pages 231-242. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-32512-0_20.
  34. Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press, 1996. URL: https://doi.org/10.1017/CBO9780511574948.
  35. Aleksander Madry. Fast approximation algorithms for cut-based problems in undirected graphs. In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 245-254. IEEE Computer Society, 2010. URL: https://doi.org/10.1109/FOCS.2010.30.
  36. Andrew McGregor. Graph stream algorithms: A survey. SIGMOD Rec., 43(1):9-20, May 2014. URL: https://doi.org/10.1145/2627692.2627694.
  37. Morteza Monemizadeh, Shan Muthukrishnan, Pan Peng, and Christian Sohler. Testable bounded degree graph properties are random order streamable. arXiv preprint, 2017. URL: https://arxiv.org/abs/1707.07334.
  38. Sagnik Mukhopadhyay and Danupon Nanongkai. Weighted min-cut: sequential, cut-query, and streaming algorithms. In Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 496-509. ACM, 2020. URL: https://doi.org/10.1145/3357713.3384334.
  39. J.I. Munro and M.S. Paterson. Selection and sorting with limited storage. Theoretical Computer Science, 12(3):315-323, 1980. URL: https://doi.org/10.1016/0304-3975(80)90061-4.
  40. Andrea Ottolini and Stefan Steinerberger. Concentration of hitting times in erdős-rényi graphs. Journal of Graph Theory, 2023. Google Scholar
  41. Merav Parter and Eylon Yogev. Optimal short cycle decomposition in almost linear time. In 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, Leibniz International Proceedings in Informatics, LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl Publishing, July 2019. URL: https://doi.org/10.4230/LIPIcs.ICALP.2019.89.
  42. Pan Peng and Christian Sohler. Estimating graph parameters from random order streams. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2449-2466. SIAM, 2018. URL: https://doi.org/10.1137/1.9781611975031.157.
  43. Aviad Rubinstein, Tselil Schramm, and S. Matthew Weinberg. Computing exact minimum cuts without knowing the graph. In Anna R. Karlin, editor, 9th Innovations in Theoretical Computer Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, volume 94 of LIPIcs, pages 39:1-39:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPICS.ITCS.2018.39.
  44. Jonah Sherman. Breaking the multicommodity flow barrier for o(vlog n)-approximations to sparsest cut. In 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, October 25-27, 2009, Atlanta, Georgia, USA, pages 363-372. IEEE Computer Society, 2009. URL: https://doi.org/10.1109/FOCS.2009.66.
  45. Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM J. Comput., 40(6):1913-1926, 2011. URL: https://doi.org/10.1137/080734029.
  46. Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In László Babai, editor, Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004, pages 81-90. ACM, 2004. URL: https://doi.org/10.1145/1007352.1007372.
  47. Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM J. Comput., 40(4):981-1025, 2011. URL: https://doi.org/10.1137/08074489X.
  48. Satoshi Sugiura and Fumitaka Kurauchi. Isolation vulnerability analysis in road network: Edge connectivity and critical link sets. Transportation Research Part D: Transport and Environment, 119:103768, 2023. Google Scholar
  49. Xiaoming Sun and David P. Woodruff. Tight Bounds for Graph Problems in Insertion Streams. In Naveen Garg, Klaus Jansen, Anup Rao, and José D. P. Rolim, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015), volume 40 of Leibniz International Proceedings in Informatics (LIPIcs), pages 435-448, Dagstuhl, Germany, 2015. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.435.
  50. Xinjue Wang, Ke Deng, Jianxin Li, Jeffery Xu Yu, Christian S Jensen, and Xiaochun Yang. Efficient targeted influence minimization in big social networks. World Wide Web, 23(4):2323-2340, 2020. URL: https://doi.org/10.1007/S11280-019-00748-Z.
  51. David P. Williamson. Lecture notes in spectral graph theory, October 2016. URL: https://people.orie.cornell.edu/dpw/orie6334/Fall2016/lecture13.pdf.
  52. Mariano Zelke. Intractability of min- and max-cut in streaming graphs. Information Processing Letters, 111(3):145-150, 2011. URL: https://doi.org/10.1016/J.IPL.2010.10.017.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail