The Computational Complexity of Factored Graphs

Authors Shreya Gupta , Boyang Huang , Russell Impagliazzo , Stanley Woo , Christopher Ye



PDF
Thumbnail PDF

File

LIPIcs.ITCS.2025.58.pdf
  • Filesize: 1.38 MB
  • 19 pages

Document Identifiers

Author Details

Shreya Gupta
  • University of California San Diego, La Jolla, CA, USA
Boyang Huang
  • University of California San Diego, La Jolla, CA, USA
Russell Impagliazzo
  • University of California San Diego, La Jolla, CA, USA
Stanley Woo
  • University of California San Diego, La Jolla, CA, USA
Christopher Ye
  • University of California San Diego, La Jolla, CA, USA

Acknowledgements

We would like to thank Antonina Kolokolova, Anthony Ostuni, and anonymous reviewers for their many helpful comments and suggestions.

Cite As Get BibTex

Shreya Gupta, Boyang Huang, Russell Impagliazzo, Stanley Woo, and Christopher Ye. The Computational Complexity of Factored Graphs. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 58:1-58:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.ITCS.2025.58

Abstract

While graphs and abstract data structures can be large and complex, practical instances are often regular or highly structured. If the instance has sufficient structure, we might hope to compress the object into a more succinct representation. An efficient algorithm (with respect to the compressed input size) could then lead to more efficient computations than algorithms taking the explicit, uncompressed object as input. This leads to a natural question: when does knowing the input instance has a more succinct representation make computation easier?
We initiate the study of the computational complexity of problems on factored graphs: graphs that are given as a formula of products and unions on smaller graphs. For any graph problem, we define a parameterized version that takes factored graphs as input, parameterized by the number of (smaller) ordinary graphs used to construct the factored graph. In this setting, we characterize the parameterized complexity of several natural graph problems, exhibiting a variety of complexities. We show that a decision version of lexicographically first maximal independent set is XP-complete, and therefore unconditionally not fixed-parameter tractable (FPT). On the other hand, we show that clique counting is FPT. Finally, we show that reachability is XNL-complete. Moreover, XNL is contained in FPT if and only if NL is contained in some fixed polynomial time.

Subject Classification

ACM Subject Classification
  • Theory of computation → Complexity theory and logic
  • Theory of computation → Complexity classes
  • Theory of computation → Problems, reductions and completeness
Keywords
  • Parameterized Complexity
  • Fine-grained complexity
  • Fixed-parameter tractability
  • Graph algorithms

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Akeo Adachi, Shigeki Iwata, and Takumi Kasai. Some combinatorial game problems require omega(n^k) time. J. ACM, 31(2):361-376, March 1984. URL: https://doi.org/10.1145/62.322433.
  2. Enric Boix Adserà, Matthew S. Brennan, and Guy Bresler. The average-case complexity of counting cliques in erdős-rényi hypergraphs. CoRR, abs/1903.08247:FOCS19-39, 2019. URL: https://doi.org/10.48550/arXiv.1903.08247.
  3. Haozhe An, Mohit Gurumukhani, Russell Impagliazzo, Michael Jaber, Marvin Künnemann, and Maria Paula Parga Nina. The fine-grained complexity of multi-dimensional ordering properties. Algorithmica, 84(11):3156-3191, 2022. URL: https://doi.org/10.1007/s00453-022-01014-x.
  4. Sanjeev Arora, David Steurer, and Avi Wigderson. Towards a study of low-complexity graphs. In Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and Wolfgang Thomas, editors, Automata, Languages and Programming, 36th International Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I, volume 5555 of Lecture Notes in Computer Science, pages 119-131. Springer, Springer, 2009. URL: https://doi.org/10.1007/978-3-642-02927-1_12.
  5. Jérémy Barbay, Luca Castelli Aleardi, Meng He, and J. Ian Munro. Succinct representation of labeled graphs. In Takeshi Tokuyama, editor, Algorithms and Computation, 18th International Symposium, ISAAC 2007, Sendai, Japan, December 17-19, 2007, Proceedings, volume 4835 of Lecture Notes in Computer Science, pages 316-328. Springer, Springer, 2007. URL: https://doi.org/10.1007/978-3-540-77120-3_29.
  6. Christoph Berkholz. Lower bounds for existential pebble games and k-consistency tests. In Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012, pages 25-34. IEEE Computer Society, 2012. URL: https://doi.org/10.1109/LICS.2012.14.
  7. Guy E. Blelloch and Arash Farzan. Succinct representations of separable graphs. In Amihood Amir and Laxmi Parida, editors, Combinatorial Pattern Matching, 21st Annual Symposium, CPM 2010, New York, NY, USA, June 21-23, 2010. Proceedings, volume 6129 of Lecture Notes in Computer Science, pages 138-150. Springer, Springer, 2010. URL: https://doi.org/10.1007/978-3-642-13509-5_13.
  8. Guy E. Blelloch, Jeremy T. Fineman, and Julian Shun. Greedy sequential maximal independent set and matching are parallel on average. In Guy E. Blelloch and Maurice Herlihy, editors, 24th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA '12, Pittsburgh, PA, USA, June 25-27, 2012, pages 308-317. ACM, 2012. URL: https://doi.org/10.1145/2312005.2312058.
  9. Hans L. Bodlaender, Carla Groenland, Jesper Nederlof, and Céline M. F. Swennenhuis. Parameterized problems complete for nondeterministic FPT time and logarithmic space. CoRR, abs/2105.14882, 2021. URL: https://doi.org/10.48550/arXiv.2105.14882.
  10. Liming Cai, Jianer Chen, Rodney G. Downey, and Michael R. Fellows. Advice classes of parameterized tractability. Ann. Pure Appl. Log., 84(1):119-138, 1997. Asian Logic Conference. URL: https://doi.org/10.1016/S0168-0072(95)00020-8.
  11. Chris Calabro, Russell Impagliazzo, Valentine Kabanets, and Ramamohan Paturi. The complexity of unique k-sat: An isolation lemma for k-cnfs. J. Comput. Syst. Sci., 74(3):386-393, 2008. URL: https://doi.org/10.1016/j.jcss.2007.06.015.
  12. Neil J. Calkin, Alan M. Frieze, and Ludek Kucera. On the expected performance of a parallel algorithm for finding maximal independent subsets of a random graph. Random Struct. Algorithms, 3(2):215-222, 1992. URL: https://doi.org/10.1002/rsa.3240030210.
  13. Ashok K. Chandra and Larry J. Stockmeyer. Alternation. In 17th Annual Symposium on Foundations of Computer Science, Houston, Texas, USA, 25-27 October 1976, pages 98-108. IEEE Computer Society, 1976. URL: https://doi.org/10.1109/SFCS.1976.4.
  14. Hubie Chen. Periodic constraint satisfaction problems: Polynomial-time algorithms. In Francesca Rossi, editor, Principles and Practice of Constraint Programming - CP 2003, 9th International Conference, CP 2003, Kinsale, Ireland, September 29 - October 3, 2003, Proceedings, volume 2833 of Lecture Notes in Computer Science, pages 199-213. Springer, Springer, 2003. URL: https://doi.org/10.1007/978-3-540-45193-8_14.
  15. Hubie Chen. Periodic constraint satisfaction problems: Tractable subclasses. Constraints An Int. J., 10(2):97-113, 2005. URL: https://doi.org/10.1007/s10601-005-0551-z.
  16. Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower bounds via parameterized complexity. J. Comput. Syst. Sci., 72(8):1346-1367, 2006. URL: https://doi.org/10.1016/j.jcss.2006.04.007.
  17. Yijia Chen, Jörg Flum, and Martin Grohe. Bounded nondeterminism and alternation in parameterized complexity theory. In 18th Annual IEEE Conference on Computational Complexity (Complexity 2003), 7-10 July 2003, Aarhus, Denmark, pages 13-29. IEEE Computer Society, 2003. URL: https://doi.org/10.1109/CCC.2003.1214407.
  18. Stephen A. Cook. A taxonomy of problems with fast parallel algorithms. Inf. Control., 64(1-3):2-21, 1985. URL: https://doi.org/10.1016/S0019-9958(85)80041-3.
  19. Stephen A. Cook and Pierre McKenzie. Problems complete for deterministic logarithmic space. J. Algorithms, 8(3):385-394, 1987. URL: https://doi.org/10.1016/0196-6774(87)90018-6.
  20. Don Coppersmith, Prabhakar Raghavan, and Martin Tompa. Parallel graph algorithms that are efficient on average. In 28th Annual Symposium on Foundations of Computer Science, Los Angeles, California, USA, 27-29 October 1987, pages 260-269. IEEE, IEEE Computer Society, 1987. URL: https://doi.org/10.1109/SFCS.1987.46.
  21. Mina Dalirrooyfard, Andrea Lincoln, and Virginia Vassilevska Williams. New techniques for proving fine-grained average-case hardness. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 774-785. IEEE, IEEE, 2020. URL: https://doi.org/10.1109/FOCS46700.2020.00077.
  22. Constantinos Daskalakis, Alex Fabrikant, and Christos H. Papadimitriou. The game world is flat: The complexity of nash equilibria in succinct games. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, Automata, Languages and Programming, 33rd International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings, Part I, volume 4051 of Lecture Notes in Computer Science, pages 513-524. Springer, Springer, 2006. URL: https://doi.org/10.1007/11786986_45.
  23. Konstantinos Daskalakis and Christos H. Papadimitriou. The complexity of games on highly regular graphs. In Gerth Stølting Brodal and Stefano Leonardi, editors, Algorithms - ESA 2005, 13th Annual European Symposium, Palma de Mallorca, Spain, October 3-6, 2005, Proceedings, volume 3669 of Lecture Notes in Computer Science, pages 71-82. Springer, Springer, 2005. URL: https://doi.org/10.1007/11561071_9.
  24. Laxman Dhulipala, Quanquan C. Liu, Julian Shun, and Shangdi Yu. Parallel batch-dynamic k-clique counting. In Michael Schapira, editor, 2nd Symposium on Algorithmic Principles of Computer Systems, APOCS 2020, Virtual Conference, January 13, 2021, pages 129-143. SIAM, SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976489.10.
  25. Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness I: basic results. SIAM J. Comput., 24(4):873-921, 1995. URL: https://doi.org/10.1137/S0097539792228228.
  26. Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness II: on completeness for W[1]. Theor. Comput. Sci., 141(1&2):109-131, 1995. URL: https://doi.org/10.1016/0304-3975(94)00097-3.
  27. Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in Computer Science. Springer, 1999. URL: https://doi.org/10.1007/978-1-4612-0515-9.
  28. Rodney G. Downey, Michael R. Fellows, and Kenneth W. Regan. Descriptive complexity and the W hierarchy. In Paul Beame and Samuel R. Buss, editors, Proof Complexity and Feasible Arithmetics, Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, April 21-24, 1996, volume 39 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 119-134. Citeseer, DIMACS/AMS, 1996. URL: https://doi.org/10.1090/dimacs/039/07.
  29. Michael Elberfeld, Christoph Stockhusen, and Till Tantau. On the space complexity of parameterized problems. In Dimitrios M. Thilikos and Gerhard J. Woeginger, editors, Parameterized and Exact Computation - 7th International Symposium, IPEC 2012, Ljubljana, Slovenia, September 12-14, 2012. Proceedings, volume 7535 of Lecture Notes in Computer Science, pages 206-217, Berlin, Heidelberg, 2012. Springer. URL: https://doi.org/10.1007/978-3-642-33293-7_20.
  30. Arash Farzan and J. Ian Munro. Succinct representations of arbitrary graphs. In Dan Halperin and Kurt Mehlhorn, editors, Algorithms - ESA 2008, 16th Annual European Symposium, Karlsruhe, Germany, September 15-17, 2008. Proceedings, volume 5193 of Lecture Notes in Computer Science, pages 393-404. Springer, Springer, 2008. URL: https://doi.org/10.1007/978-3-540-87744-8_33.
  31. Joan Feigenbaum, Daphne Koller, and Peter W. Shor. A game-theoretic classification of interactive complexity classes. In Proceedings of the Tenth Annual Structure in Complexity Theory Conference, Minneapolis, Minnesota, USA, June 19-22, 1995, pages 227-237. IEEE, IEEE Computer Society, 1995. URL: https://doi.org/10.1109/SCT.1995.514861.
  32. Jörg Flum and Martin Grohe. Fixed-parameter tractability, definability, and model-checking. SIAM J. Comput., 31(1):113-145, 2001. URL: https://doi.org/10.1137/S0097539799360768.
  33. Jörg Flum and Martin Grohe. Describing parameterized complexity classes. Inf. Comput., 187(2):291-319, 2003. URL: https://doi.org/10.1016/S0890-5401(03)00161-5.
  34. Lance Fortnow, Russell Impagliazzo, Valentine Kabanets, and Christopher Umans. On the complexity of succinct zero-sum games. Comput. Complex., 17(3):353-376, 2008. URL: https://doi.org/10.1007/s00037-008-0252-2.
  35. Hana Galperin and Avi Wigderson. Succinct representations of graphs. Inf. Control., 56(3):183-198, 1983. URL: https://doi.org/10.1016/S0019-9958(83)80004-7.
  36. Gianluigi Greco, Enrico Malizia, Luigi Palopoli, and Francesco Scarcello. The complexity of the nucleolus in compact games. ACM Trans. Comput. Theory, 7(1):3:1-3:52, 2014. URL: https://doi.org/10.1145/2692372.2692374.
  37. Shreya Gupta, Boyang Huang, Russell Impagliazzo, Stanley Woo, and Christopher Ye. The computational complexity of factored graphs. CoRR, abs/2407.19102, 2024. URL: https://doi.org/10.48550/arXiv.2407.19102.
  38. Xin He, Ming-Yang Kao, and Hsueh-I Lu. Linear-time succinct encodings of planar graphs via canonical orderings. SIAM J. Discret. Math., 12(3):317-325, 1999. URL: https://doi.org/10.1137/S0895480197325031.
  39. Monika Henzinger, Andrea Lincoln, and Barna Saha. The complexity of average-case dynamic subgraph counting. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 459-498. SIAM, SIAM, 2022. URL: https://doi.org/10.1137/1.9781611977073.23.
  40. Franz Höfting and Egon Wanke. Polynomial algorithms for minimum cost paths in periodic graphs. In Vijaya Ramachandran, editor, Proceedings of the Fourth Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms, 25-27 January 1993, Austin, Texas, USA, pages 493-499. ACM/SIAM, 1993. URL: http://dl.acm.org/citation.cfm?id=313559.313868.
  41. Bruce Hoppe and Éva Tardos. The quickest transshipment problem. Math. Oper. Res., 25(1):36-62, 2000. URL: https://doi.org/10.1287/moor.25.1.36.15211.
  42. Shweta Jain and C. Seshadhri. The power of pivoting for exact clique counting. In James Caverlee, Xia (Ben) Hu, Mounia Lalmas, and Wei Wang, editors, WSDM '20: The Thirteenth ACM International Conference on Web Search and Data Mining, Houston, TX, USA, February 3-7, 2020, pages 268-276. ACM, 2020. URL: https://doi.org/10.1145/3336191.3371839.
  43. Neil D. Jones. Space-bounded reducibility among combinatorial problems. J. Comput. Syst. Sci., 11(1):68-85, 1975. URL: https://doi.org/10.1016/S0022-0000(75)80050-X.
  44. Sampath Kannan, Moni Naor, and Steven Rudich. Implicit representation of graphs. In Janos Simon, editor, Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 334-343. ACM, 1988. URL: https://doi.org/10.1145/62212.62244.
  45. Takumi Kasai, Akeo Adachi, and Shigeki Iwata. Classes of pebble games and complete problems. SIAM J. Comput., 8(4):574-586, 1979. URL: https://doi.org/10.1137/0208046.
  46. Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider. On the fine-grained complexity of one-dimensional dynamic programming. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 21:1-21:15. Schloss-Dagstuhl-Leibniz Zentrum für Informatik, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.ICALP.2017.21.
  47. Sebastian Maneth and Fabian Peternek. A survey on methods and systems for graph compression. CoRR, abs/1504.00616, 2015. https://arxiv.org/abs/1504.00616, URL: https://doi.org/10.48550/arXiv.1504.00616.
  48. Madhav V. Marathe, Harry B. Hunt III, Daniel J. Rosenkrantz, and Richard Edwin Stearns. Theory of periodically specified problems: Complexity and approximability. In Proceedings of the 13th Annual IEEE Conference on Computational Complexity, Buffalo, New York, USA, June 15-18, 1998, page 106. IEEE, IEEE Computer Society, 1998. URL: https://doi.org/10.1109/CCC.1998.694596.
  49. Madhav V. Marathe, Harry B. Hunt III, Richard Edwin Stearns, and Venkatesh Radhakrishnan. Approximation schemes for pspace-complete problems for succinct specifications (preliminary version). In Frank Thomson Leighton and Michael T. Goodrich, editors, Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, 23-25 May 1994, Montréal, Québec, Canada, pages 468-477. ACM, 1994. URL: https://doi.org/10.1145/195058.195233.
  50. Satoru Miyano. The lexicographically first maximum subgraph problems: P-completeness and NC algorithms. Math. Syst. Theory, 22(1):47-73, 1989. URL: https://doi.org/10.1007/BF02088292.
  51. Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph problem. Commentationes Mathematicae Universitatis Carolinae, 026(2):415-419, 1985. URL: http://eudml.org/doc/17394.
  52. James B. Orlin. The complexity of dynamic languages and dynamic optimization problems. In Proceedings of the 13th Annual ACM Symposium on Theory of Computing, May 11-13, 1981, Milwaukee, Wisconsin, USA, pages 218-227. ACM, 1981. URL: https://doi.org/10.1145/800076.802475.
  53. Christos H. Papadimitriou and Tim Roughgarden. Computing correlated equilibria in multi-player games. J. ACM, 55(3):14:1-14:29, 2008. URL: https://doi.org/10.1145/1379759.1379762.
  54. Victor Parque and Tomoyuki Miyashita. On succinct representation of directed graphs. In 2017 IEEE International Conference on Big Data and Smart Computing, BigComp 2017, Jeju Island, South Korea, February 13-16, 2017, pages 199-205. IEEE, IEEE, 2017. URL: https://doi.org/10.1109/BIGCOMP.2017.7881738.
  55. Mihai Patrascu and Ryan Williams. On the possibility of faster SAT algorithms. In Moses Charikar, editor, Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 1065-1075. SIAM, SIAM, 2010. URL: https://doi.org/10.1137/1.9781611973075.86.
  56. Jessica Shi, Laxman Dhulipala, and Julian Shun. Parallel clique counting and peeling algorithms. In Michael Bender, John Gilbert, Bruce Hendrickson, and Blair D. Sullivan, editors, Proceedings of the 2021 SIAM Conference on Applied and Computational Discrete Algorithms, ACDA 2021, Virtual Conference, July 19-21, 2021, pages 135-146. SIAM, SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976830.13.
  57. Michael Sipser. Introduction to the theory of computation. SIGACT News, 27(1):27-29, 1996. URL: https://doi.org/10.1145/230514.571645.
  58. Ryuhei Uehara. A measure of parallelization for the lexicographically first maximal subgraph problems. In Rolf H. Möhring, editor, Graph-Theoretic Concepts in Computer Science, 23rd International Workshop, WG '97, Berlin, Germany, June 18-20, 1997, Proceedings, volume 1335 of Lecture Notes in Computer Science, pages 333-341. Springer, Springer, 1997. URL: https://doi.org/10.1007/BFb0024508.
  59. Ryuhei Uehara. Another measure for the lexicographically first maximal subgraph problems and its threshold value on a random graph. In 1999 International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN '99), 23-25 June 1999, Fremantle, Australia, pages 350-355. IEEE, IEEE Computer Society, 1999. URL: https://doi.org/10.1109/ISPAN.1999.778963.
  60. Ryuhei Uehara. A measure for the lexicographically first maximal independent set problem and its limits. Int. J. Found. Comput. Sci., 10(4):473-482, 1999. URL: https://doi.org/10.1142/S0129054199000332.
  61. Emanuele Viola and Avi Wigderson. Local expanders. Comput. Complex., 27(2):225-244, 2018. URL: https://doi.org/10.1007/s00037-017-0155-1.
  62. Klaus W. Wagner. The complexity of combinatorial problems with succinct input representation. Acta Informatica, 23(3):325-356, 1986. URL: https://doi.org/10.1007/BF00289117.
  63. Egon Wanke. Paths and cycles in finite periodic graphs. In Andrzej M. Borzyszkowski and Stefan Sokolowski, editors, Mathematical Foundations of Computer Science 1993, 18th International Symposium, MFCS'93, Gdansk, Poland, August 30 - September 3, 1993, Proceedings, volume 711 of Lecture Notes in Computer Science, pages 751-760. Springer, Springer, 1993. URL: https://doi.org/10.1007/3-540-57182-5_66.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail