Doubly Sub-Linear Interactive Proofs of Proximity

Authors Noga Amir, Oded Goldreich , Guy N. Rothblum



PDF
Thumbnail PDF

File

LIPIcs.ITCS.2025.6.pdf
  • Filesize: 0.97 MB
  • 25 pages

Document Identifiers

Author Details

Noga Amir
  • Weizmann Institute of Science, Rehovot, Israel
Oded Goldreich
  • Weizmann Institute of Science, Rehovot, Israel
Guy N. Rothblum
  • Apple, Cupertino, CA, USA

Cite As Get BibTex

Noga Amir, Oded Goldreich, and Guy N. Rothblum. Doubly Sub-Linear Interactive Proofs of Proximity. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 6:1-6:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.ITCS.2025.6

Abstract

We initiate a study of doubly-efficient interactive proofs of proximity, while focusing on properties that can be tested within query-complexity that is significantly sub-linear, and seeking interactive proofs of proximity in which  
1) The query-complexity of verification is significantly smaller than the query-complexity of testing. 
2) The query-complexity of the honest prover strategy is not much larger than the query-complexity of testing.  We call such proof systems doubly-sublinear IPPs (dsIPPs).
We present a few doubly-sublinear IPPs. A salient feature of these IPPs is that the honest prover does not employ an optimal strategy (i.e. a strategy that maximizes the verifier’s acceptance probability). In particular, the honest prover in our IPP for sets recognizable by constant-width read-once oblivious branching programs uses a distance-approximator for such sets.

Subject Classification

ACM Subject Classification
  • Theory of computation → Interactive proof systems
Keywords
  • Interactive Proof Systems
  • Interactive Proofs of Proximity
  • Query Complexity
  • Read Once Branching Programs
  • Sub-linear

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Ran Canetti, Guy Even, and Oded Goldreich. Lower bounds for sampling algorithms for estimating the average. Inf. Process. Lett., 53(1):17-25, 1995. URL: https://doi.org/10.1016/0020-0190(94)00171-T.
  2. Alessandro Chiesa and Tom Gur. Proofs of proximity for distribution testing. In Anna R. Karlin, editor, 9th Innovations in Theoretical Computer Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, volume 94 of LIPIcs, pages 53:1-53:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPICS.ITCS.2018.53.
  3. Funda Ergün, Ravi Kumar, and Ronitt Rubinfeld. Fast approximate probabilistically checkable proofs. Inf. Comput., 189(2):135-159, 2004. URL: https://doi.org/10.1016/J.IC.2003.09.005.
  4. Oded Goldreich. Introduction to Property Testing. Cambridge University Press, 2017. URL: https://doi.org/10.1017/9781108135252.
  5. Oded Goldreich. On doubly-efficient interactive proof systems. Found. Trends Theor. Comput. Sci., 13(3):158-246, 2018. URL: https://doi.org/10.1561/0400000084.
  6. Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to learning and approximation. J. ACM, 45(4):653-750, 1998. URL: https://doi.org/10.1145/285055.285060.
  7. Oded Goldreich, Tom Gur, and Ron D. Rothblum. Proofs of proximity for context-free languages and read-once branching programs. Inf. Comput., 261:175-201, 2018. URL: https://doi.org/10.1016/J.IC.2018.02.003.
  8. Oded Goldreich and Dana Ron. A sublinear bipartiteness tester for bounded degree graphs. Comb., 19(3):335-373, 1999. URL: https://doi.org/10.1007/S004930050060.
  9. Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. Algorithmica, 32(2):302-343, 2002. URL: https://doi.org/10.1007/S00453-001-0078-7.
  10. Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: Interactive proofs for muggles. J. ACM, 62(4):27:1-27:64, 2015. URL: https://doi.org/10.1145/2699436.
  11. Shafi Goldwasser, Guy N. Rothblum, Jonathan Shafer, and Amir Yehudayoff. Interactive proofs for verifying machine learning. In James R. Lee, editor, 12th Innovations in Theoretical Computer Science Conference, ITCS 2021, January 6-8, 2021, Virtual Conference, volume 185 of LIPIcs, pages 41:1-41:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPICS.ITCS.2021.41.
  12. Tom Gur, Mohammad Mahdi Jahanara, Mohammad Mahdi Khodabandeh, Ninad Rajgopal, Bahar Salamatian, and Igor Shinkar. On the power of interactive proofs for learning. In Bojan Mohar, Igor Shinkar, and Ryan O'Donnell, editors, Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024, Vancouver, BC, Canada, June 24-28, 2024, pages 1063-1070. ACM, 2024. URL: https://doi.org/10.1145/3618260.3649784.
  13. Tom Gur, Yang P. Liu, and Ron D. Rothblum. An exponential separation between MA and AM proofs of proximity. Comput. Complex., 30(2):12, 2021. URL: https://doi.org/10.1007/S00037-021-00212-3.
  14. Tal Herman and Guy N. Rothblum. Verifying the unseen: interactive proofs for label-invariant distribution properties. In Stefano Leonardi and Anupam Gupta, editors, STOC '22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 1208-1219. ACM, 2022. URL: https://doi.org/10.1145/3519935.3519987.
  15. Tal Herman and Guy N. Rothblum. Doubley-efficient interactive proofs for distribution properties. In 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 743-751. IEEE, 2023. URL: https://doi.org/10.1109/FOCS57990.2023.00049.
  16. Ilan Newman. Testing membership in languages that have small width branching programs. SIAM J. Comput., 31(5):1557-1570, 2002. URL: https://doi.org/10.1137/S009753970038211X.
  17. Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance approximation. J. Comput. Syst. Sci., 72(6):1012-1042, 2006. URL: https://doi.org/10.1016/J.JCSS.2006.03.002.
  18. Pavel Pudlák. A lower bound on complexity of branching programs (extended abstract). In Michal Chytil and Václav Koubek, editors, Mathematical Foundations of Computer Science 1984, Praha, Czechoslovakia, September 3-7, 1984, Proceedings, volume 176 of Lecture Notes in Computer Science, pages 480-489. Springer, 1984. URL: https://doi.org/10.1007/BFB0030331.
  19. Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive proofs for delegating computation. SIAM J. Comput., 50(3), 2021. URL: https://doi.org/10.1137/16M1096773.
  20. Guy N. Rothblum and Ron D. Rothblum. Batch verification and proofs of proximity with polylog overhead. In Rafael Pass and Krzysztof Pietrzak, editors, Theory of Cryptography - 18th International Conference, TCC 2020, Durham, NC, USA, November 16-19, 2020, Proceedings, Part II, volume 12551 of Lecture Notes in Computer Science, pages 108-138. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-64378-2_5.
  21. Guy N. Rothblum, Salil P. Vadhan, and Avi Wigderson. Interactive proofs of proximity: delegating computation in sublinear time. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC'13, Palo Alto, CA, USA, June 1-4, 2013, pages 793-802. ACM, 2013. URL: https://doi.org/10.1145/2488608.2488709.
  22. Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications to program testing. SIAM J. Comput., 25(2):252-271, 1996. URL: https://doi.org/10.1137/S0097539793255151.
  23. Hadar Strauss. Emulating computationally sound public-coin ipps in the pre-coordinated model. Electronic Colloquium on Computational Complexity (ECCC), TR24-131, 2024. URL: https://eccc.weizmann.ac.il/report/2024/131/.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail