A High Dimensional Cramer’s Rule Connecting Homogeneous Multilinear Equations to Hyperdeterminants

Authors Antoine Joux , Anand Kumar Narayanan



PDF
Thumbnail PDF

File

LIPIcs.ITCS.2025.62.pdf
  • Filesize: 0.7 MB
  • 16 pages

Document Identifiers

Author Details

Antoine Joux
  • CISPA – Helmholtz Center for Information Security, Saarbrücken, Germany
Anand Kumar Narayanan
  • SandboxAQ, Palo Alto, CA, USA

Acknowledgements

We thank the anonymous ITCS 2025 referees for their valuable suggestions.

Cite As Get BibTex

Antoine Joux and Anand Kumar Narayanan. A High Dimensional Cramer’s Rule Connecting Homogeneous Multilinear Equations to Hyperdeterminants. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 62:1-62:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.ITCS.2025.62

Abstract

We present a new algorithm for solving homogeneous multilinear equations, which are high dimensional generalisations of solving homogeneous linear equations. First, we present a linear time reduction from solving generic homogeneous multilinear equations to computing hyperdeterminants, via a high dimensional Cramer’s rule. Hyperdeterminants are generalisations of determinants, associated with tensors of formats generalising square matrices. Second, we devise arithmetic circuits to compute hyperdeterminants of boundary format tensors. Boundary format tensors are those that generalise square matrices in the strictest sense. Consequently, we obtain arithmetic circuits for solving generic homogeneous boundary format multilinear equations. The complexity as a function of the input dimension varies across boundary format families, ranging from quasi-polynomial to sub exponential. Curiously, the quasi-polynomial complexity arises for families of increasing dimension, including the family of multipartite quantum systems made of d qubits and one qudit. Finally, we identify potential directions to resolve the hardness the hyperdeterminants, notably modulo prime numbers through the cryptographically significant tensor isomorphism complexity class.

Subject Classification

ACM Subject Classification
  • Theory of computation → Algebraic complexity theory
Keywords
  • arithmetic circuits
  • tensors
  • determinants
  • hyperdeterminants

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Walter Baur and Volker Strassen. The complexity of partial derivatives. Theoretical Computer Science, 22(3):317-330, 1983. URL: https://doi.org/10.1016/0304-3975(83)90110-X.
  2. M. Bläser, D. H. Duong, A. K. Narayanan, T. Plantard, Y. Qiao, A. Sipasseuth, and G. Tang. The alteq signature scheme: Algorithm specifications and supporting documentation, 2023. URL: https://pqcalteq.github.io/ALTEQ_spec_2023.09.18.pdf.
  3. Arthur Cayley. On the Theory of Elimination, pages 370-374. Cambridge Library Collection - Mathematics. Cambridge University Press, 2009. Google Scholar
  4. Zhili Chen, Joshua A. Grochow, Youming Qiao, Gang Tang, and Chuanqi Zhang. On the Complexity of Isomorphism Problems for Tensors, Groups, and Polynomials III: Actions by Classical Groups. In Venkatesan Guruswami, editor, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024), volume 287 of Leibniz International Proceedings in Informatics (LIPIcs), pages 31:1-31:23, Dagstuhl, Germany, 2024. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ITCS.2024.31.
  5. Tung Chou, Ruben Niederhagen, Edoardo Persichetti, Tovohery Hajatiana Randrianarisoa, Krijn Reijnders, Simona Samardjiska, and Monika Trimoska. Take your meds: Digital signatures from matrix code equivalence. In Nadia El Mrabet, Luca De Feo, and Sylvain Duquesne, editors, Progress in Cryptology - AFRICACRYPT 2023, pages 28-52, Cham, 2023. Springer Nature Switzerland. URL: https://doi.org/10.1007/978-3-031-37679-5_2.
  6. Valerie Coffman, Joydip Kundu, and William K. Wootters. Distributed entanglement. Phys. Rev. A, 61:052306, April 2000. URL: https://doi.org/10.1103/PhysRevA.61.052306.
  7. Carla Dionisi and Giorgio Ottaviani. The binet–cauchy theorem for the hyperdeterminant of boundary format multi-dimensional matrices. Journal of Algebra, 259(1):87-94, 2003. URL: https://doi.org/10.1016/S0021-8693(02)00537-9.
  8. J. Grochow and Y. Qiao. On the complexity of isomorphism problems for tensors, groups, and polynomials iv: linear-length reductions and their applications. Google Scholar
  9. Joshua Grochow and Youming Qiao. On the complexity of isomorphism problems for tensors, groups, and polynomials i: Tensor isomorphism-completeness. SIAM Journal on Computing, 52(2):568-617, 2023. URL: https://doi.org/10.1137/21M1441110.
  10. Christopher J. Hillar and Lek-Heng Lim. Most tensor problems are np-hard. J. ACM, 60(6), November 2013. URL: https://doi.org/10.1145/2512329.
  11. M. Kapranov I. Gelfand and A. Zelevinsky. Hyperdeterminants. Advances in Mathematics, 96:226-263, 1992. Google Scholar
  12. M. Kapranov I. Gelfand and A. Zelevinsky. Discriminants, Resultants, and Multidimensional Determinants. Modern Birkhäuser Classics, 1994. Google Scholar
  13. Stephen P. Jordan. Fast quantum algorithm for numerical gradient estimation. Phys. Rev. Lett., 95:050501, July 2005. URL: https://doi.org/10.1103/PhysRevLett.95.050501.
  14. H. Kaji. On the duals of segre varieties. Geometriae Dedicata, 99:221-229, 2003. Google Scholar
  15. Serge Lang and André Weil. Number of points of varieties in finite fields. American Journal of Mathematics, 76(4):819-827, 1954. URL: http://www.jstor.org/stable/2372655.
  16. Lek-Heng Lim. Singular values and eigenvalues of tensors: a variational approach. In 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005., pages 129-132, 2005. URL: https://doi.org/10.1109/CAMAP.2005.1574201.
  17. M. Mahajan and V. Vinay. Determinant: Combinatorics, algorithms, and complexity. Chicago Journal of Theoretical Computer Science, 5, 1997. Google Scholar
  18. Akimasa Miyake and Miki Wadati. Multipartite entanglement and hyperdeterminants. Quantum Info. Comput., 2(7):540-555, December 2002. URL: https://doi.org/10.26421/QIC2.S-4.
  19. Giorgio Ottaviani. Introduction to the Hyperdeterminant and to the Rank of Multidimensional Matrices, pages 609-638. Springer New York, New York, NY, 2013. URL: https://doi.org/10.1007/978-1-4614-5292-8_20.
  20. Lars Ran and Simona Samardjiska. Rare structures in tensor graphs - bermuda triangles for cryptosystems based on the tensor isomorphism problem. Cryptology ePrint Archive, Paper 2024/1396, 2024. URL: https://eprint.iacr.org/2024/1396.
  21. Mohab Safey El Din and Éric Schost. Bit complexity for multi-homogeneous polynomial system solving—application to polynomial minimization. Journal of Symbolic Computation, 87:176-206, 2018. URL: https://doi.org/10.1016/j.jsc.2017.08.001.
  22. L. Schläfli. Über die Resultante eines Systemes mehrerer algebraischer Gleichungen, pages 9-112. Springer Basel, Basel, 1953. URL: https://doi.org/10.1007/978-3-0348-4117-7_1.
  23. J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. ACM, 27(4):701-717, October 1980. URL: https://doi.org/10.1145/322217.322225.
  24. N. Sendrier and D. E. Simos. How easy is code equivalence over fq? In International Workshop on Coding and Cryptography - WCC 2013, 2013. Google Scholar
  25. K. Slavov. Improved lang-weil bounds for a geometrically irreducible hypersurface over a finite field. Canadian Mathematical Bulletin, 66(2):654-664, 2023. Google Scholar
  26. P-J. Spaenlehauer. Solving multi-homogeneous and determinantal systems: algorithms, complexity, applications. PhD thesis, Universitê Pierre et Marie Curie (Univ. Paris 6), 2012. Google Scholar
  27. Pierre-Jean Spaenlehauer. On the complexity of computing critical points with gröbner bases. SIAM Journal on Optimization, 24(3):1382-1401, 2014. URL: https://doi.org/10.1137/130936294.
  28. Xiaorui Sun. Faster isomorphism for p-groups of class 2 and exponent p. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, pages 433-440, New York, NY, USA, 2023. Association for Computing Machinery. URL: https://doi.org/10.1145/3564246.3585250.
  29. Gang Tang, Dung Hoang Duong, Antoine Joux, Thomas Plantard, Youming Qiao, and Willy Susilo. Practical post-quantum signature schemes from isomorphism problems of trilinear forms. Eurocrypt 2022, 2022. URL: https://eprint.iacr.org/2022/267.
  30. Jerzy Weyman and Andrei Zelevinsky. Singularities of hyperdeterminants. Annales de l'institut Fourier, 46(3):591-644, 1996. URL: http://eudml.org/doc/75190.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail