Formulations and Constructions of Remote State Preparation with Verifiability, with Applications

Author Jiayu Zhang



PDF
Thumbnail PDF

File

LIPIcs.ITCS.2025.96.pdf
  • Filesize: 0.68 MB
  • 19 pages

Document Identifiers

Author Details

Jiayu Zhang
  • Zhongguancun Laboratory, Beijing, China

Acknowledgements

I would like to thank Thomas Vidick, Zhengfeng Ji, Anne Broadbent and Qipeng Liu for discussions.

Cite As Get BibTex

Jiayu Zhang. Formulations and Constructions of Remote State Preparation with Verifiability, with Applications. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 96:1-96:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.ITCS.2025.96

Abstract

Remote state preparation with verifiability (RSPV) is an important quantum cryptographic primitive [Alexandru Gheorghiu and Thomas Vidick, 2019; Jiayu Zhang, 2022]. In this primitive, a client would like to prepare a quantum state (sampled or chosen from a state family) on the server side, such that ideally the client knows its full description, while the server holds and only holds the state itself. In this work we make several contributions on its formulations, constructions and applications. In more detail: 
- We first work on the definitions and abstract properties of the RSPV problem. We select and compare different variants of definitions [Bennett et al., 2001; Alexandru Gheorghiu and Thomas Vidick, 2019; Jiayu Zhang, 2022; Alexandru Gheorghiu et al., 2022], and study their basic properties (like composability and amplification). 
- We also study a closely related question of how to certify the server’s operations (instead of solely the states). We introduce a new notion named remote operator application with verifiability (ROAV). We compare this notion with related existing definitions [Summers and Werner, 1987; Dominic Mayers and Andrew Chi-Chih Yao, 2004; Zhengfeng Ji et al., 2021; Tony Metger and Thomas Vidick, 2021; Anand Natarajan and Tina Zhang, 2023], study its abstract properties and leave its concrete constructions for further works. 
- Building on the abstract properties and existing results [Zvika Brakerski et al., 2023], we construct a series of new RSPV protocols. Our constructions not only simplify existing results [Alexandru Gheorghiu and Thomas Vidick, 2019] but also cover new state families, for example, states in the form of 1/√2 (|0⟩ + |x_0⟩ + |1⟩ |x_1⟩). All these constructions rely only on the existence of weak NTCF [Zvika Brakerski et al., 2020; Navid Alamati et al., 2022], without additional requirements like the adaptive hardcore bit property [Zvika Brakerski et al., 2018; Navid Alamati et al., 2022]. 
- As a further application, we show that the classical verification of quantum computations (CVQC) problem [Dorit Aharonov et al., 2010; Urmila Mahadev, 2018] could be constructed from assumptions on group actions [Navid Alamati et al., 2020]. This is achieved by combining our results on RSPV with group-action-based instantiation of weak NTCF [Navid Alamati et al., 2022], and then with the quantum-gadget-assisted quantum verification protocol [Ferracin et al., 2018].

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational complexity and cryptography
Keywords
  • Quantum Cryptography
  • Remote State Preparation
  • Self-testing
  • Verification of Quantum Computations

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Discussion with Thomas Vidick on details of paper "computationally secure and composable remote state preparation", 2024. Google Scholar
  2. Dorit Aharonov, Michael Ben-Or, and Elad Eban. Interactive proofs for quantum computations. In Andrew Chi-Chih Yao, editor, Innovations in Computer Science - ICS 2010, Tsinghua University, Beijing, China, January 5-7, 2010. Proceedings, pages 453-469. Tsinghua University Press, 2010. URL: http://conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/35.html.
  3. Gorjan Alagic, Andrew M. Childs, Alex B. Grilo, and Shih-Han Hung. Non-interactive classical verification of quantum computation. In Rafael Pass and Krzysztof Pietrzak, editors, Theory of Cryptography - 18th International Conference, TCC 2020, Durham, NC, USA, November 16-19, 2020, Proceedings, Part III, volume 12552 of Lecture Notes in Computer Science, pages 153-180. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-64381-2_6.
  4. Navid Alamati, Luca De Feo, Hart Montgomery, and Sikhar Patranabis. Cryptographic group actions and applications. In Shiho Moriai and Huaxiong Wang, editors, Advances in Cryptology - ASIACRYPT 2020 - 26th International Conference on the Theory and Application of Cryptology and Information Security, Daejeon, South Korea, December 7-11, 2020, Proceedings, Part II, volume 12492 of Lecture Notes in Computer Science, pages 411-439, Berlin, Heidelberg, 2020. Springer. URL: https://doi.org/10.1007/978-3-030-64834-3_14.
  5. Navid Alamati, Giulio Malavolta, and Ahmadreza Rahimi. Candidate trapdoor claw-free functions from group actions with applications to quantum protocols. In Eike Kiltz and Vinod Vaikuntanathan, editors, Theory of Cryptography - 20th International Conference, TCC 2022, Chicago, IL, USA, November 7-10, 2022, Proceedings, Part I, volume 13747 of Lecture Notes in Computer Science, pages 266-293, Berlin, Heidelberg, 2022. Springer. URL: https://doi.org/10.1007/978-3-031-22318-1_10.
  6. Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M. Martinis. Quantum supremacy using a programmable superconducting processor. Nature, 574(7779):505-510, 2019. URL: https://doi.org/10.1038/s41586-019-1666-5.
  7. James Bartusek. Secure quantum computation with classical communication. In Kobbi Nissim and Brent Waters, editors, Theory of Cryptography - 19th International Conference, TCC 2021, Raleigh, NC, USA, November 8-11, 2021, Proceedings, Part I, volume 13042 of Lecture Notes in Computer Science, pages 1-30, Cham, 2021. Springer. URL: https://doi.org/10.1007/978-3-030-90459-3_1.
  8. Charles H. Bennett, David P. DiVincenzo, Peter W. Shor, John A. Smolin, Barbara M. Terhal, and William K. Wootters. Remote state preparation. Phys. Rev. Lett., 87:077902, July 2001. URL: https://doi.org/10.1103/PhysRevLett.87.077902.
  9. Dolev Bluvstein et al. A quantum processor based on coherent transport of entangled atom arrays. Nature, 604(7906):451-456, 2022. URL: https://doi.org/10.1038/s41586-022-04592-6.
  10. Zvika Brakerski, Paul F. Christiano, Urmila Mahadev, Umesh V. Vazirani, and Thomas Vidick. A cryptographic test of quantumness and certifiable randomness from a single quantum device. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 320-331. IEEE Computer Society, 2018. URL: https://doi.org/10.1109/FOCS.2018.00038.
  11. Zvika Brakerski, Alexandru Gheorghiu, Gregory D. Kahanamoku-Meyer, Eitan Porat, and Thomas Vidick. Simple tests of quantumness also certify qubits. In Helena Handschuh and Anna Lysyanskaya, editors, Advances in Cryptology - CRYPTO 2023 - 43rd Annual International Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceedings, Part V, volume 14085 of Lecture Notes in Computer Science, pages 162-191. Springer, 2023. URL: https://doi.org/10.1007/978-3-031-38554-4_6.
  12. Zvika Brakerski, Venkata Koppula, Umesh V. Vazirani, and Thomas Vidick. Simpler proofs of quantumness. In Steven T. Flammia, editor, 15th Conference on the Theory of Quantum Computation, Communication and Cryptography, TQC 2020, June 9-12, 2020, Riga, Latvia, volume 158 of LIPIcs, pages 8:1-8:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, May 2020. URL: https://doi.org/10.4230/LIPIcs.TQC.2020.8.
  13. Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes. CSIDH: an efficient post-quantum commutative group action. In Thomas Peyrin and Steven D. Galbraith, editors, Advances in Cryptology - ASIACRYPT 2018 - 24th International Conference on the Theory and Application of Cryptology and Information Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part III, volume 11274 of Lecture Notes in Computer Science, pages 395-427, Berlin, Heidelberg, 2018. Springer. URL: https://doi.org/10.1007/978-3-030-03332-3_15.
  14. Nai-Hui Chia, Kai-Min Chung, and Takashi Yamakawa. Classical verification of quantum computations with efficient verifier. In Rafael Pass and Krzysztof Pietrzak, editors, Theory of Cryptography - 18th International Conference, TCC 2020, Durham, NC, USA, November 16-19, 2020, Proceedings, Part III, volume 12552 of Lecture Notes in Computer Science, pages 181-206, Cham, 2020. Springer. URL: https://doi.org/10.1007/978-3-030-64381-2_7.
  15. Alexandru Cojocaru, Léo Colisson, Elham Kashefi, and Petros Wallden. Qfactory: Classically-instructed remote secret qubits preparation. In Steven D. Galbraith and Shiho Moriai, editors, Advances in Cryptology - ASIACRYPT 2019 - 25th International Conference on the Theory and Application of Cryptology and Information Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part I, volume 11921 of Lecture Notes in Computer Science, pages 615-645. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-34578-5_22.
  16. Yfke Dulek, Christian Schaffner, and Florian Speelman. Quantum homomorphic encryption for polynomial-sized circuits. IACR Cryptol. ePrint Arch., 2016:559, 2016. URL: http://eprint.iacr.org/2016/559.
  17. Samuele Ferracin, Theodoros Kapourniotis, and Animesh Datta. Reducing resources for verification of quantum computations. Phys. Rev. A, 98:022323, August 2018. URL: https://doi.org/10.1103/PhysRevA.98.022323.
  18. Honghao Fu, Daochen Wang, and Qi Zhao. Parallel self-testing of EPR pairs under computational assumptions. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium on Automata, Languages, and Programming, ICALP 2023, July 10-14, 2023, Paderborn, Germany, volume 261 of LIPIcs, pages 64:1-64:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.ICALP.2023.64.
  19. Alexandru Gheorghiu, Tony Metger, and Alexander Poremba. Quantum cryptography with classical communication: parallel remote state preparation for copy-protection, verification, and more. IACR Cryptol. ePrint Arch., page 122, 2022. URL: https://eprint.iacr.org/2022/122.
  20. Alexandru Gheorghiu and Thomas Vidick. Computationally-secure and composable remote state preparation. In David Zuckerman, editor, 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 1024-1033. IEEE Computer Society, 2019. URL: https://doi.org/10.1109/FOCS.2019.00066.
  21. Alex B. Grilo. A simple protocol for verifiable delegation of quantum computation in one round. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 28:1-28:13, Dagstuhl, Germany, 2019. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ICALP.2019.28.
  22. Aparna Gupte and Vinod Vaikuntanathan. How to construct quantum fhe, generically. IACR Cryptol. ePrint Arch., page 893, June 2024. URL: https://eprint.iacr.org/2024/893, URL: https://arxiv.org/abs/2406.03379.
  23. Zhengfeng Ji, Yi-Kai Liu, and Fang Song. Pseudorandom quantum states. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology - CRYPTO 2018, pages 126-152, Cham, 2018. Springer International Publishing. URL: https://doi.org/10.1007/978-3-319-96878-0_5.
  24. Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen. Mip* = RE. Commun. ACM, 64(11):131-138, October 2021. URL: https://doi.org/10.1145/3485628.
  25. Yael Kalai, Alex Lombardi, Vinod Vaikuntanathan, and Lisa Yang. Quantum advantage from any non-local game. In Barna Saha and Rocco A. Servedio, editors, Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, STOC 2023, pages 1617-1628, New York, NY, USA, 2023. ACM. URL: https://doi.org/10.1145/3564246.3585164.
  26. Urmila Mahadev. Classical homomorphic encryption for quantum circuits. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 332-338. IEEE Computer Society, 2018. URL: https://doi.org/10.1109/FOCS.2018.00039.
  27. Urmila Mahadev. Classical verification of quantum computations. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 259-267. IEEE Computer Society, 2018. URL: https://doi.org/10.1109/FOCS.2018.00033.
  28. Dominic Mayers and Andrew Chi-Chih Yao. Self testing quantum apparatus. Quantum Inf. Comput., 4(4):273-286, July 2004. URL: https://doi.org/10.26421/QIC4.4-3.
  29. Tony Metger and Thomas Vidick. Self-testing of a single quantum device under computational assumptions. In James R. Lee, editor, 12th Innovations in Theoretical Computer Science Conference, ITCS 2021, January 6-8, 2021, Virtual Conference, volume 185 of LIPIcs, pages 19:1-19:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ITCS.2021.19.
  30. Akihiro Mizutani, Yuki Takeuchi, Ryo Hiromasa, Yusuke Aikawa, and Seiichiro Tani. Computational self-testing for entangled magic states. Phys. Rev. A, 106(1):L010601, 2022. URL: https://doi.org/10.1103/PhysRevA.106.L010601.
  31. Anand Natarajan and Tina Zhang. Bounding the quantum value of compiled nonlocal games: From CHSH to BQP verification. In 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 1342-1348. IEEE, 2023. URL: https://doi.org/10.1109/FOCS57990.2023.00081.
  32. Arun Kumar Pati. Minimum cbits required to transmit a qubit. Phys. Rev. A, 63:014320, 2001. URL: https://doi.org/10.1103/PhysRevA.63.014320.
  33. Sandu Popescu and Daniel Rohrlich. Which states violate bell’s inequality maximally? Physics Letters A, 169(6):411-414, 1992. URL: https://doi.org/10.1016/0375-9601(92)90819-8.
  34. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM, 56(6), September 2009. URL: https://doi.org/10.1145/1568318.1568324.
  35. Ben W. Reichardt, Falk Unger, and Umesh V. Vazirani. Classical command of quantum systems. Nat., 496(7446):456-460, 2013. URL: https://doi.org/10.1038/nature12035.
  36. Gregory Rosenthal and Henry Yuen. Interactive proofs for synthesizing quantum states and unitaries. In Mark Braverman, editor, 13th Innovations in Theoretical Computer Science Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley, CA, USA, volume 215 of LIPIcs, pages 112:1-112:4. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.ITCS.2022.112.
  37. Omri Shmueli. Public-key quantum money with a classical bank. In Stefano Leonardi and Anupam Gupta, editors, STOC '22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, STOC 2022, pages 790-803, New York, NY, USA, 2022. ACM. URL: https://doi.org/10.1145/3519935.3519952.
  38. Stephen J. Summers and R. Werner. Maximal Violation of Bell’s Inequalities Is Generic in Quantum Field Theory. Commun. Math. Phys., 110:247-259, 1987. URL: https://doi.org/10.1007/BF01207366.
  39. Jiayu Zhang. Delegating quantum computation in the quantum random oracle model. In Dennis Hofheinz and Alon Rosen, editors, Theory of Cryptography - 17th International Conference, TCC 2019, Nuremberg, Germany, December 1-5, 2019, Proceedings, Part II, volume 11892 of Lecture Notes in Computer Science, pages 30-60, Cham, 2019. Springer. URL: https://doi.org/10.1007/978-3-030-36033-7_2.
  40. Jiayu Zhang. Succinct blind quantum computation using a random oracle. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC '21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 1370-1383, New York, NY, USA, 2021. ACM. URL: https://doi.org/10.1145/3406325.3451082.
  41. Jiayu Zhang. Classical verification of quantum computations in linear time. In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pages 46-57, Los Alamitos, CA, USA, November 2022. IEEE. URL: https://doi.org/10.1109/FOCS54457.2022.00012.
  42. Qingling Zhu, Sirui Cao, Fusheng Chen, Ming-Cheng Chen, Xiawei Chen, Tung Hsun Chung, Hui Deng, Yajie Du, Daojin Fan, Ming Gong, Cheng Guo, Chu Guo, Shaojun Guo, Lian-Chen Han, Linyin Hong, Heliang Huang, Yongheng Huo, Liping Li, Na Li, Shaowei Li, Yuan Yuan Li, Futian Liang, Chun Lin, Jin Lin, Haoran Qian, Dan Qiao, Hao Rong, Hong-Bo Su, Lihua Sun, Liangyuan Wang, Shiyu Wang, Dachao Wu, Yulin Wu, Yu Xu, Kai Yan, Weifeng Yang, Yang Yang, Yangsen Ye, Jian Hua Yin, Chong Ying, Jiale Yu, Chen Zha, Cha Zhang, Haibin Zhang, Kaili Zhang, Yiming Zhang, Han Zhao, You-Wei Zhao, Liang Zhou, Chaoyang Lu, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Quantum computational advantage via 60-qubit 24-cycle random circuit sampling. Science bulletin, 67 3:240-245, 2021. URL: https://api.semanticscholar.org/CorpusID:237442167.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail