eng
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Leibniz International Proceedings in Informatics
1868-8969
2016-08-19
76:1
76:14
10.4230/LIPIcs.MFCS.2016.76
article
Supplementarity is Necessary for Quantum Diagram Reasoning
Perdrix, Simon
Wang, Quanlong
The ZX-calculus is a powerful diagrammatic language for quantum mechanics and quantum information processing. We prove that its pi/4-fragment is not complete, in other words the ZX-calculus is not complete for the so called "Clifford+T quantum mechanics". The completeness of this fragment was one of the main open problems in categorical quantum mechanics, a programme initiated by Abramsky and Coecke. The ZX-calculus was known to be incomplete for quantum mechanics. On the other hand, its pi/2-fragment is known to be complete, i.e. the ZX-calculus is complete for the so called "stabilizer quantum mechanics". Deciding whether its pi/4-fragment is complete is a crucial step in the development of the ZX-calculus since this fragment is approximately universal for quantum mechanics, contrary to the pi/2-fragment.
To establish our incompleteness result, we consider a fairly simple property of quantum states called supplementarity. We show that supplementarity can be derived in the ZX-calculus if and only if the angles involved in this equation are multiples of pi/2. In particular, the impossibility to derive supplementarity for pi/4 implies the incompleteness of the ZX-calculus for Clifford+T quantum mechanics. As a consequence, we propose to add the supplementarity to the set of rules of the ZX-calculus.
We also show that if a ZX-diagram involves antiphase twins, they can be merged when the ZX-calculus is augmented with the supplementarity rule. Merging antiphase twins makes diagrammatic reasoning much easier and provides a purely graphical meaning to the supplementarity rule.
https://drops.dagstuhl.de/storage/00lipics/lipics-vol058-mfcs2016/LIPIcs.MFCS.2016.76/LIPIcs.MFCS.2016.76.pdf
quantum diagram reasoning
completeness
ZX-calculus
quantum computing
categorical quantum mechanics