Counting Problems for Parikh Images
Given finite-state automata (or context-free grammars) A,B over the same alphabet and a Parikh vector p, we study the complexity of deciding whether the number of words in the language of A with Parikh image p is greater than the number of such words in the language of B. Recently, this problem turned out to be tightly related to the cost problem for weighted Markov chains. We classify the complexity according to whether A and B are deterministic, the size of the alphabet, and the encoding of p (binary or unary).
Parikh images
finite automata
counting problems
12:1-12:13
Regular Paper
Christoph
Haase
Christoph Haase
Stefan
Kiefer
Stefan Kiefer
Markus
Lohrey
Markus Lohrey
10.4230/LIPIcs.MFCS.2017.12
E. Allender and K. W. Wagner. Counting hierarchies: Polynomial time and constant depth circuits. Bulletin of the EATCS, 40:182-194, 1990.
A. Bertoni, M. Goldwurm, and N. Sabadini. The complexity of computing the number of strings of given length in context-free languages. Theor. Comput. Sci., 86(2):325-342, 1991.
E. Galby, J. Ouaknine, and J. Worrell. On matrix powering in low dimensions. In Proc. STACS 2015, volume 30 of LIPIcs, pages 329-340, 2015.
F. Green, J. Köbler, K. W. Regan, T. Schwentick, and J.Torán. The power of the middle bit of a #p function. Journal of Computer and System Sciences, 50(3):456-467, 1995.
C. Haase and S. Kiefer. The odds of staying on budget. In Proc. ICALP 2015, Part II, volume 9135 of LNCS, pages 234-246. Springer, 2015.
C. Haase, S. Kiefer, and M. Lohrey. Efficient quantile computation in markov chains via counting problems for parikh images. CoRR, abs/1601.04661, 2016. URL: http://arxiv.org/abs/1601.04661.
http://arxiv.org/abs/1601.04661
C. Haase, S. Kiefer, and M. Lohrey. Computing quantiles in Markov chains with multi-dimensional costs. In Proc. LICS 2017. IEEE, 2017. To appear.
H. B. Hunt III, D. J. Rosenkrantz, and T. G. Szymanski. On the equivalence, containment, and covering problems for the regular and context-free languages. J. Comput. Syst. Sci., 12(2):222-268, 1976.
E. Kopczyński. Complexity of problems of commutative grammars. Log. Meth. Comput. Sci., 11(1), 2015.
D. Kuske and M. Lohrey. First-order and counting theories of omega-automatic structures. J. Symbolic Logic, 73:129-150, 2008.
R. E. Ladner. Polynomial space counting problems. SIAM J. Comput., 18(6):1087-1097, 1989.
M. Mahajan and V. Vinay. A combinatorial algorithm for the determinant. In Proc. SODA 1997, pages 730-738. ACM/SIAM, 1997.
C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
Z. Sawa. Efficient construction of semilinear representations of languages accepted by unary nondeterministic finite automata. Fundam. Inform., 123(1):97-106, 2013.
L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time (preliminary report). In Proc. STOC 1973, pages 1-9. ACM, 1973.
S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865-877, 1991.
Creative Commons Attribution 3.0 Unported license
https://creativecommons.org/licenses/by/3.0/legalcode