The exponential-time hypothesis (ETH) states that 3-SAT is not solvable in subexponential time, i.e. not solvable in O(c^n) time for arbitrary c > 1, where n denotes the number of variables. Problems like k-SAT can be viewed as special cases of the constraint satisfaction problem (CSP), which is the problem of determining whether a set of constraints is satisfiable. In this paper we study the worst-case time complexity of NP-complete CSPs. Our main interest is in the CSP problem parameterized by a constraint language Gamma (CSP(Gamma)), and how the choice of Gamma affects the time complexity. It is believed that CSP(Gamma) is either tractable or NP-complete, and the algebraic CSP dichotomy conjecture gives a sharp delineation of these two classes based on algebraic properties of constraint languages. Under this conjecture and the ETH, we first rule out the existence of subexponential algorithms for finite domain NP-complete CSP(Gamma) problems. This result also extends to certain infinite-domain CSPs and structurally restricted CSP(Gamma) problems. We then begin a study of the complexity of NP-complete CSPs where one is allowed to arbitrarily restrict the values of individual variables, which is a very well-studied subclass of CSPs. For such CSPs with finite domain D, we identify a relation SD such that (1) CSP({SD}) is NP-complete and (2) if CSP(Gamma) over D is NP-complete and solvable in O(c^n) time, then CSP({SD}) is solvable in O(c^n) time, too. Hence, the time complexity of CSP({SD}) is a lower bound for all CSPs of this particular kind. We also prove that the complexity of CSP({SD}) is decreasing when |D| increases, unless the ETH is false. This implies, for instance, that for every c>1 there exists a finite-domain Gamma such that CSP(Gamma) is NP complete and solvable in O(c^n) time.