Combinatorial Properties and Recognition of Unit Square Visibility Graphs
Unit square (grid) visibility graphs (USV and USGV, resp.) are described by axis-parallel visibility between unit squares placed (on integer grid coordinates) in the plane. We investigate combinatorial properties of these graph classes and the hardness of variants of the recognition problem, i.e., the problem of representing USGV with fixed visibilities within small area and, for USV, the general recognition problem.
Visibility graphs
visibility layout
NP-completeness
exact algorithms
30:1-30:15
Regular Paper
Katrin
Casel
Katrin Casel
Henning
Fernau
Henning Fernau
Alexander
Grigoriev
Alexander Grigoriev
Markus L.
Schmid
Markus L. Schmid
Sue
Whitesides
Sue Whitesides
10.4230/LIPIcs.MFCS.2017.30
E. N. Argyriou, M. A. Bekos, and A. Symvonis. Maximizing the total resolution of graphs. In U. Brandes and S. Cornelsen, editors, Graph Drawing, GD 2010, volume 6502 of LNCS, pages 62-67. Springer, 2011.
E. N. Argyriou, M. A. Bekos, and A. Symvonis. The straight-line RAC drawing problem is NP-hard. Journal of Graph Algorithms and Applications, 16(2):569-597, 2012.
A. Arleo, C. Binucci, E. Di Giacomo, W. S. Evans, L. Grilli, G. Liotta, H. Meijer, F. Montecchiani, S. Whitesides, and S. K. Wismath. Visibility representations of boxes in 2.5 dimensions. In Y. Hu and M. Nöllenburg, editors, Graph Drawing and Network Visualization - 24th International Symposium, GD, volume 9801 of LNCS, pages 251-265. Springer, 2016.
M. Babbitt, J. Geneson, and T. Khovanova. On k-visibility graphs. Journal of Graph Algorithms and Applications, 19(1):345-360, 2015.
S. N. Bhatt and S. S. Cosmadakis. The complexity of minimizing wire lengths in VLSI layouts. Information Processing Letters, 25(4):263-267, 1987.
T. C. Biedl, G. Liotta, and F. Montecchiani. On visibility representations of non-planar graphs. In S. P. Fekete and A. Lubiw, editors, 32nd International Symposium on Computational Geometry, SoCG, volume 51 of LIPIcs, pages 19:1-19:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.
H. L. Bodlaender and G. Tel. A note on rectilinearity and angular resolution. Journal of Graph Algorithms and Applications, 8:89-94, 2004.
P. Bose, H. Everett, S. P. Fekete, M. E. Houle, A. Lubiw, H. Meijer, K. Romanik, G. Rote, T. C. Shermer, S. Whitesides, and C. Zelle. A visibility representation for graphs in three dimensions. Journal of Graph Algorithms and Applications, 2(2), 1998.
K. Casel, H. Fernau, A. Grigoriev, M L. Schmid, and S. Whitesides. Combinatorial properties and recognition of unit square visibility graphs, 2017. URL: http://arxiv.org/abs/1706.05906.
http://arxiv.org/abs/1706.05906
S. Chaplick, G. Guśpiel, G. Gutowski, T. Krawczyk, and G. Liotta. The partial visibility representation extension problem. In Y. Hu and M. Nöllenburg, editors, Graph Drawing and Network Visualization - 24th International Symposium, GD, volume 9801 of LNCS, pages 266-279. Springer, 2016.
S. Chaplick, F. Lipp, J.-W. Park, and A. Wolff. Obstructing visibilities with one obstacle. In Y. Hu and M. Nöllenburg, editors, Graph Drawing and Network Visualization - 24th International Symposium, GD, volume 9801 of LNCS, pages 295-308. Springer, 2016.
A. M. Dean, J. A. Ellis-Monaghan, S. Hamilton, and G. Pangborn. Unit rectangle visibility graphs. Electronic Journal of Combinatorics, 15, 2008.
A. M. Dean, W. S. Evans, E. Gethner, J. D. Laison, M. A. Safari, and W. T. Trotter. Bar k-visibility graphs. Journal of Graph Algorithms and Applications, 11(1):45-59, 2007.
A. M. Dean and J. P. Hutchinson. Rectangle-visibility representations of bipartite graphs. Discrete Applied Mathematics, 75(1):9-25, 1997.
W. Didimo, P. Eades, and G. Liotta. Drawing graphs with right angle crossings. Theoretical Computer Science, 412(39):5156-5166, 2011.
P. Duchet, Y. Hamidoune, M. Las Vergnas, and H. Meyniel. Representing a planar graph by vertical lines joining different levels. Discrete Mathematics, 46(3):319-321, 1983.
P. Eades, S.-H. Hong, and S.-H. Poon. On rectilinear drawing of graphs. In D. Eppstein and E. R. Gansner, editors, Graph Drawing, 17th International Symposium, GD 2009, volume 5849 of LNCS, pages 232-243. Springer, 2010.
W. S. Evans, G. Liotta, and F. Montecchiani. Simultaneous visibility representations of plane st-graphs using L-shapes. Theoretical Computer Science, 645:100-111, 2016.
S. P. Fekete, M. E. Houle, and S. Whitesides. New results on a visibility representation of graphs in 3D. In F.-J. Brandenburg, editor, Graph Drawing, Symposium on Graph Drawing, GD'95, volume 1027 of LNCS, pages 234-241. Springer, 1996.
S. Felsner. Rectangle and square representations of planar graphs. In J. Pach, editor, Thirty Essays on Geometric Graph Theory, pages 213-248. Springer, New York, 2013.
M. Formann, T. Hagerup, J. Haralambides, M. Kaufmann, F. T. Leighton, A. Symvonis, E. Welzl, and G. J. Woeginger. Drawing graphs in the plane with high resolution. In 31st Annual Symposium on Foundations of Computer Science, FOCS, Volume I, pages 86-95. IEEE Computer Society, 1990.
M. R. Garey and D. S. Johnson. Computers and Intractability. New York: Freeman, 1979.
E. Gaub, M. Rose, and P. S. Wenger. The unit bar visibility number of a graph. Journal of Graph Algorithms and Applications, 20(2):269-297, 2016.
E. Di Giacomo, W. Didimo, W. S. Evans, G. Liotta, H. Meijer, F. Montecchiani, and S. K. Wismath. Ortho-polygon visibility representations of embedded graphs. In Y. Hu and M. Nöllenburg, editors, Graph Drawing and Network Visualization - 24th International Symposium, GD, volume 9801 of LNCS, pages 280-294. Springer, 2016.
J. Maňuch, M. Patterson, S.-H. Poon, and C. Thachuk. Complexity of finding non-planar rectilinear drawings of graphs. In U. Brandes and S. Cornelsen, editors, Graph Drawing - 18th International Symposium, GD 2010, volume 6502 of LNCS, pages 305-316. Springer, 2011.
N. J. Nilsson. A mobile automaton: An application of artificial intelligence techniques. In D. E. Walker and L. M. Norton, editors, Proceedings of the 1st International Joint Conference on Artificial Intelligence, IJCAI, pages 509-520. William Kaufmann, 1969.
T. J. Schaefer. The complexity of satisfiability problems. In Proc. 10th Ann. ACM Symp. Theory of Computing STOC, pages 216-226. ACM Press, 1978.
I. Streinu and S. Whitesides. Rectangle visibility graphs: Characterization, construction, and compaction. In H. Alt and M. Habib, editors, 20th Annual Symposium on Theoretical Aspects of Computer Science, STACS, volume 2607 of LNCS, pages 26-37. Springer, 2003.
R. Tamassia and I. G. Tollis. A unified approach to visibility representations of planar graphs. Discrete & Computational Geometry, 1(4):321-341, 1986.
S. K. Wismath. Characterizing bar line-of-sight graphs. In J. O'Rourke, editor, Proceedings of the First Annual Symposium on Computational Geometry, pages 147-152. ACM, 1985.
Creative Commons Attribution 3.0 Unported license
https://creativecommons.org/licenses/by/3.0/legalcode