In the Cluster Deletion problem the goal is to remove the minimum number of edges of a given graph, such that every connected component of the resulting graph constitutes a clique. It is known that the decision version of Cluster Deletion is NP-complete on (P_5-free) chordal graphs, whereas Cluster Deletion is solved in polynomial time on split graphs. However, the existence of a polynomial-time algorithm of Cluster Deletion on interval graphs, a proper subclass of chordal graphs, remained a well-known open problem. Our main contribution is that we settle this problem in the affirmative, by providing a polynomial-time algorithm for Cluster Deletion on interval graphs. Moreover, despite the simple formulation of the algorithm on split graphs, we show that Cluster Deletion remains NP-complete on a natural and slight generalization of split graphs that constitutes a proper subclass of P_5-free chordal graphs. Although the later result arises from the already-known reduction for P_5-free chordal graphs, we give an alternative proof showing an interesting connection between edge-weighted and vertex-weighted variations of the problem. To complement our results, we provide faster and simpler polynomial-time algorithms for Cluster Deletion on subclasses of such a generalization of split graphs.