Breaking the Barrier 2^k for Subset Feedback Vertex Set in Chordal Graphs

Authors Tian Bai , Mingyu Xiao



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2024.15.pdf
  • Filesize: 0.82 MB
  • 18 pages

Document Identifiers

Author Details

Tian Bai
  • School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
Mingyu Xiao
  • School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China

Cite AsGet BibTex

Tian Bai and Mingyu Xiao. Breaking the Barrier 2^k for Subset Feedback Vertex Set in Chordal Graphs. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 15:1-15:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.MFCS.2024.15

Abstract

The Subset Feedback Vertex Set problem (SFVS) is to delete k vertices from a given graph such that in the remaining graph, any vertex in a subset T of vertices (called a terminal set) is not in a cycle. The famous Feedback Vertex Set problem is the special case of SFVS with T being the whole set of vertices. In this paper, we study exact algorithms for SFVS in Split Graphs (SFVS-S) and SFVS in Chordal Graphs (SFVS-C). SFVS-S generalizes the minimum vertex cover problem and the prize-collecting version of the maximum independent set problem in hypergraphs (PCMIS), and SFVS-C further generalizes SFVS-S. Both SFVS-S and SFVS-C are implicit 3-Hitting Set problems. However, it is not easy to solve them faster than 3-Hitting Set. In 2019, Philip, Rajan, Saurabh, and Tale (Algorithmica 2019) proved that SFVS-C can be solved in 𝒪^*(2^k) time, slightly improving the best result 𝒪^*(2.0755^k) for 3-Hitting Set. In this paper, we break the "2^k-barrier" for SFVS-S and SFVS-C by introducing an 𝒪^*(1.8192^k)-time algorithm. This achievement also indicates that PCMIS can be solved in 𝒪^*(1.8192ⁿ) time, marking the first exact algorithm for PCMIS that outperforms the trivial 𝒪^*(2ⁿ) threshold. Our algorithm uses reduction and branching rules based on the Dulmage-Mendelsohn decomposition and a divide-and-conquer method.

Subject Classification

ACM Subject Classification
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • Subset Feedback Vertex Set
  • Prize-Collecting Maximum Independent Set
  • Parameterized Algorithms
  • Split Graphs
  • Chordal Graphs
  • Dulmage-Mendelsohn Decomposition

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Faisal N. Abu-Khzam. A kernelization algorithm for d-hitting set. J. Comput. Syst. Sci., 76(7):524-531, 2010. Google Scholar
  2. Tian Bai and Mingyu Xiao. Exact and parameterized algorithms for restricted subset feedback vertex set in chordal graphs. In Theory and Applications of Models of Computation - 17th Annual Conference, TAMC, volume 13571 of LNCS, pages 249-261. Springer, 2022. Google Scholar
  3. Tian Bai and Mingyu Xiao. A parameterized algorithm for subset feedback vertex set in tournaments. Theor. Comput. Sci., 975:114139, 2023. Google Scholar
  4. Tian Bai and Mingyu Xiao. Exact algorithms for restricted subset feedback vertex set in chordal and split graphs. Theor. Comput. Sci., 984:114326, 2024. URL: https://doi.org/10.1016/J.TCS.2023.114326.
  5. Jannis Blauth and Martin Nägele. An improved approximation guarantee for prize-collecting TSP. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, (STOC), pages 1848-1861. ACM, 2023. Google Scholar
  6. Hans L. Bodlaender. On disjoint cycles. Int. J. Found. Comput. Sci., 5(1):59-68, 1994. Google Scholar
  7. Peter Buneman. A characterisation of rigid circuit graphs. Discrete Mathematics, 9(3):205-212, 1974. Google Scholar
  8. Chandra Chekuri and Chao Xu. Computing minimum cuts in hypergraphs. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA), pages 1085-1100. SIAM, 2017. Google Scholar
  9. Jianer Chen and Iyad A. Kanj. Constrained minimum vertex cover in bipartite graphs: complexity and parameterized algorithms. J. Comput. Syst. Sci., 67(4):833-847, 2003. Google Scholar
  10. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, Berlin, 2015. Google Scholar
  11. Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. Subset feedback vertex set is fixed-parameter tractable. SIAM J. Discret. Math., 27(1):290-309, 2013. Google Scholar
  12. Erik D. Demaine, MohammadTaghi Hajiaghayi, and Dániel Marx. 09511 open problems – parameterized complexity and approximation algorithms. In Parameterized complexity and approximation algorithms, volume 9511 of Dagstuhl Seminar Proceedings (DagSemProc), pages 1-10, Dagstuhl, Germany, 2010. Google Scholar
  13. Gabriel Andrew Dirac. On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg, 25(1):71-76, 1961. Google Scholar
  14. Michael Dom, Jiong Guo, Falk Hüffner, Rolf Niedermeier, and Anke Truß. Fixed-parameter tractability results for feedback set problems in tournaments. J. Discrete Algorithms, 8(1):76-86, 2010. Google Scholar
  15. A. L. Dulmage and N. S. Mendelsohn. Coverings of bipartite graphs. Canadian Journal of Mathematics, 10:517-534, 1958. Google Scholar
  16. Andrew L Dulmage. A structure theory of bipartite graphs of finite exterior dimension. The Transactions of the Royal Society of Canada, Section III, 53:1-13, 1959. Google Scholar
  17. Guy Even, Joseph Naor, and Leonid Zosin. An 8-approximation algorithm for the subset feedback vertex set problem. SIAM J. Comput., 30(4):1231-1252, 2000. Google Scholar
  18. Fedor V. Fomin, Pinar Heggernes, Dieter Kratsch, Charis Papadopoulos, and Yngve Villanger. Enumerating minimal subset feedback vertex sets. Algorithmica, 69(1):216-231, 2014. Google Scholar
  19. Fedor V. Fomin, Tien-Nam Le, Daniel Lokshtanov, Saket Saurabh, Stéphan Thomassé, and Meirav Zehavi. Subquadratic kernels for implicit 3-hitting set and 3-set packing problems. ACM Trans. Algorithms, 15(1):13:1-13:44, 2019. Google Scholar
  20. Kyle Fox, Debmalya Panigrahi, and Fred Zhang. Minimum cut and minimum k-cut in hypergraphs via branching contractions. ACM Trans. Algorithms, 19(2):13:1-13:22, 2023. Google Scholar
  21. Takuro Fukunaga. Spider covers for prize-collecting network activation problem. ACM Trans. Algorithms, 13(4):49:1-49:31, 2017. Google Scholar
  22. Delbert Fulkerson and Oliver Gross. Incidence matrices and interval graphs. Pacific J. Math., 15(3):835-855, 1965. Google Scholar
  23. Fǎnicǎ Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs. Journal of Combinatorial Theory, Series B, 16(1):47-56, 1974. Google Scholar
  24. Magnús M. Halldórsson and Elena Losievskaja. Independent sets in bounded-degree hypergraphs. Discret. Appl. Math., 157(8):1773-1786, 2009. Google Scholar
  25. Eva-Maria C. Hols and Stefan Kratsch. A randomized polynomial kernel for subset feedback vertex set. Theory Comput. Syst., 62(1):63-92, 2018. Google Scholar
  26. John E. Hopcroft and Richard M. Karp. An n^5/2 algorithm for maximum matchings in bipartite graphs. SIAM J. Comput., 2(4):225-231, 1973. Google Scholar
  27. Falk Hüffner, Christian Komusiewicz, Hannes Moser, and Rolf Niedermeier. Fixed-parameter algorithms for cluster vertex deletion. Theory Comput. Syst., 47(1):196-217, 2010. Google Scholar
  28. Yoichi Iwata. Linear-time kernelization for feedback vertex set. In 44th International Colloquium on Automata, Languages, and Programming, ICALP, pages 68:1-68:14, 2017. Google Scholar
  29. Yoichi Iwata and Yusuke Kobayashi. Improved analysis of highest-degree branching for feedback vertex set. Algorithmica, 83(8):2503-2520, 2021. Google Scholar
  30. Yoichi Iwata, Magnus Wahlström, and Yuichi Yoshida. Half-integrality, LP-branching, and FPT algorithms. SIAM J. Comput., 45(4):1377-1411, 2016. Google Scholar
  31. Yoichi Iwata, Yutaro Yamaguchi, and Yuichi Yoshida. 0/1/all CSPs, half-integral A-path packing, and linear-time FPT algorithms. In 59th IEEE Annual Symposium on Foundations of Computer Science, (FOCS), pages 462-473, 2018. Google Scholar
  32. Richard M. Karp. Reducibility among combinatorial problems. In Proceedings of a Symposium on the Complexity of Computer Computations, The IBM Research Symposia Series, pages 85-103, 1972. Google Scholar
  33. Mithilesh Kumar and Daniel Lokshtanov. Faster exact and parameterized algorithm for feedback vertex set in tournaments. In 33rd Symposium on Theoretical Aspects of Computer Science, (STACS), volume 47 of LIPIcs, pages 49:1-49:13, 2016. Google Scholar
  34. László Lovász and Michael D. Plummer. Matching theory, volume 121 of North-Holland Mathematics Studies. Elsevier Science Ltd., London, 1 edition, 1986. Google Scholar
  35. Charis Papadopoulos and Spyridon Tzimas. Polynomial-time algorithms for the subset feedback vertex set problem on interval graphs and permutation graphs. Discret. Appl. Math., 258:204-221, 2019. Google Scholar
  36. Lehilton Lelis Chaves Pedrosa and Hugo Kooki Kasuya Rosado. A 2-approximation for the k-prize-collecting steiner tree problem. Algorithmica, 84(12):3522-3558, 2022. Google Scholar
  37. Geevarghese Philip, Varun Rajan, Saket Saurabh, and Prafullkumar Tale. Subset feedback vertex set in chordal and split graphs. Algorithmica, 81(9):3586-3629, 2019. Google Scholar
  38. Donald J. Rose, Robert Endre Tarjan, and George S. Lueker. Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput., 5(2):266-283, 1976. Google Scholar
  39. Földes Stephane and Peter Hammer. Split graphs. In Proceedings of the 8th south-east Combinatorics, Graph Theory, and Computing, volume 9, pages 311-315, 1977. Google Scholar
  40. Stéphan Thomassé. A 4k² kernel for feedback vertex set. ACM Trans. Algorithms, 6(2):32:1-32:8, 2010. Google Scholar
  41. Kangyi Tian, Mingyu Xiao, and Boting Yang. Parameterized algorithms for cluster vertex deletion on degree-4 graphs and general graphs. In Computing and Combinatorics - 29th International Conference, (COCOON), volume 14422 of LNCS, pages 182-194. Springer, 2023. Google Scholar
  42. Magnus Wahlström. Algorithms, measures and upper bounds for satisfiability and related problems. PhD thesis, Linköping University, Sweden, 2007. Google Scholar
  43. James Richard Walter. Representations of rigid cycle graphs. PhD thesis, Wayne State University, 1972. Google Scholar
  44. Mihalis Yannakakis and Fanica Gavril. The maximum k-colorable subgraph problem for chordal graphs. Inf. Process. Lett., 24(2):133-137, 1987. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail