Minimizing Cost Register Automata over a Field

Authors Yahia Idriss Benalioua, Nathan Lhote, Pierre-Alain Reynier



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2024.23.pdf
  • Filesize: 0.7 MB
  • 15 pages

Document Identifiers

Author Details

Yahia Idriss Benalioua
  • Aix Marseille Univ, CNRS, LIS, Marseille, France
Nathan Lhote
  • Aix Marseille Univ, CNRS, LIS, Marseille, France
Pierre-Alain Reynier
  • Aix Marseille Univ, CNRS, LIS, Marseille, France

Cite AsGet BibTex

Yahia Idriss Benalioua, Nathan Lhote, and Pierre-Alain Reynier. Minimizing Cost Register Automata over a Field. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 23:1-23:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.MFCS.2024.23

Abstract

Weighted automata (WA) are an extension of finite automata that define functions from words to values in a given semiring. An alternative deterministic model, called Cost Register Automata (CRA), was introduced by Alur et al. It enriches deterministic finite automata with a finite number of registers, which store values, updated at each transition using the operations of the semiring. It is known that CRA with register updates defined by linear maps have the same expressiveness as WA. Previous works have studied the register minimization problem: given a function computable by a WA and an integer k, is it possible to realize it using a CRA with at most k registers? In this paper, we solve this problem for CRA over a field with linear register updates, using the notion of linear hull, an algebraic invariant of WA introduced recently by Bell and Smertnig. We then generalise the approach to solve a more challenging problem, that consists in minimizing simultaneously the number of states and that of registers. In addition, we also lift our results to the setting of CRA with affine updates. Last, while the linear hull was recently shown to be computable by Bell and Smertnig, no complexity bounds were given. To fill this gap, we provide two new algorithms to compute invariants of WA. This allows us to show that the register (resp. state-register) minimization problem can be solved in 2-ExpTime (resp. in NExpTime).

Subject Classification

ACM Subject Classification
  • Theory of computation → Quantitative automata
Keywords
  • Weighted automata
  • Cost Register automata
  • Zariski topology

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Rajeev Alur, Loris D'Antoni, Jyotirmoy V. Deshmukh, Mukund Raghothaman, and Yifei Yuan. Regular functions and cost register automata. In 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages 13-22. IEEE Computer Society, 2013. Google Scholar
  2. Rajeev Alur and Mukund Raghothaman. Decision problems for additive regular functions. In Automata, Languages, and Programming - 40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part II, volume 7966 of Lecture Notes in Computer Science, pages 37-48. Springer, 2013. Google Scholar
  3. Jason Bell and Daniel Smertnig. Noncommutative rational pólya series. Selecta Mathematica, 27, July 2021. URL: https://doi.org/10.1007/s00029-021-00629-2.
  4. Jason P. Bell and Daniel Smertnig. Computing the linear hull: Deciding deterministic? and unambiguous? for weighted automata over fields. In 38th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2023, Boston, MA, USA, June 26-29, 2023, pages 1-13. IEEE, 2023. URL: https://doi.org/10.1109/LICS56636.2023.10175691.
  5. Yahia Idriss Benalioua, Nathan Lhote, and Pierre-Alain Reynier. Minimizing cost register automata over a field, 2024. URL: https://arxiv.org/abs/2307.13505.
  6. Jean Berstel. Transductions and context-free languages, volume 38 of Teubner Studienbücher : Informatik. Teubner, 1979. URL: https://www.worldcat.org/oclc/06364613.
  7. Christian Choffrut. Une caractérisation des fonctions séquentielles et des fonctions sous-séquentielles en tant que relations rationnelles. Theor. Comput. Sci., 5(3):325-337, 1977. URL: https://doi.org/10.1016/0304-3975(77)90049-4.
  8. Thomas Colcombet and Daniela Petrisan. Automata in the category of glued vector spaces. In Kim G. Larsen, Hans L. Bodlaender, and Jean-François Raskin, editors, 42nd International Symposium on Mathematical Foundations of Computer Science, MFCS 2017, August 21-25, 2017 - Aalborg, Denmark, volume 83 of LIPIcs, pages 52:1-52:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.MFCS.2017.52.
  9. Laure Daviaud. Containment and equivalence of weighted automata: Probabilistic and max-plus cases. In Alberto Leporati, Carlos Martín-Vide, Dana Shapira, and Claudio Zandron, editors, Language and Automata Theory and Applications - 14th International Conference, LATA 2020, Milan, Italy, March 4-6, 2020, Proceedings, volume 12038 of Lecture Notes in Computer Science, pages 17-32. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-40608-0_2.
  10. Laure Daviaud, Ismaël Jecker, Pierre-Alain Reynier, and Didier Villevalois. Degree of sequentiality of weighted automata. In FOSSACS 2017, volume 10203 of Lecture Notes in Computer Science, pages 215-230, 2017. Google Scholar
  11. Laure Daviaud, Pierre-Alain Reynier, and Jean-Marc Talbot. A generalised twinning property for minimisation of cost register automata. In LICS '16, pages 857-866. ACM, 2016. Google Scholar
  12. Ehud Hrushovski, Joël Ouaknine, Amaury Pouly, and James Worrell. On strongest algebraic program invariants. J. ACM, 70(5):29:1-29:22, 2023. URL: https://doi.org/10.1145/3614319.
  13. Ismaël Jecker, Filip Mazowiecki, and David Purser. Determinisation and unambiguisation of polynomially-ambiguous rational weighted automata. In Pawel Sobocinski, Ugo Dal Lago, and Javier Esparza, editors, Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2024, Tallinn, Estonia, July 8-11, 2024, pages 46:1-46:13. ACM, 2024. URL: https://doi.org/10.1145/3661814.3662073.
  14. Heiko Vogler Manfred Droste, Werner Kuich. Handbook of Weighted Automata. Springer Berlin, Heidelberg, 2009. URL: https://doi.org/10.1007/978-3-642-01492-5.
  15. Mehryar Mohri. Finite-state transducers in language and speech processing. Comput. Linguistics, 23(2):269-311, 1997. Google Scholar
  16. Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009. URL: https://doi.org/10.1017/CBO9781139195218.
  17. Marcel Paul Schützenberger. On the definition of a family of automata. Inf. Control., 4(2-3):245-270, 1961. URL: https://doi.org/10.1016/S0019-9958(61)80020-X.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail