Breaking a Graph into Connected Components with Small Dominating Sets

Authors Matthias Bentert, Michael R. Fellows , Petr A. Golovach , Frances A. Rosamond , Saket Saurabh



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2024.24.pdf
  • Filesize: 0.75 MB
  • 15 pages

Document Identifiers

Author Details

Matthias Bentert
  • University of Bergen, Norway
Michael R. Fellows
  • University of Bergen, Norway
  • Lebanese American University, Beirut, Lebanon
Petr A. Golovach
  • University of Bergen, Norway
Frances A. Rosamond
  • University of Bergen, Norway
  • Lebanese American University, Beirut, Lebanon
Saket Saurabh
  • The Institute of Mathematical Sciences, Chennai, India

Cite AsGet BibTex

Matthias Bentert, Michael R. Fellows, Petr A. Golovach, Frances A. Rosamond, and Saket Saurabh. Breaking a Graph into Connected Components with Small Dominating Sets. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 24:1-24:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.MFCS.2024.24

Abstract

We study DOMINATED CLUSTER DELETION. Therein, we are given an undirected graph G = (V,E) and integers k and d and the task is to find a set of at most k vertices such that removing these vertices results in a graph in which each connected component has a dominating set of size at most d. We also consider the special case where d is a constant. We show an almost complete tetrachotomy in terms of para-NP-hardness, containment in XP, containment in FPT, and admitting a polynomial kernel with respect to parameterizations that are a combination of k,d,c, and Δ, where c and Δ are the degeneracy and the maximum degree of the input graph, respectively. As a main contribution, we show that the problem can be solved in f(k,d) ⋅ n^O(d) time, that is, the problem is FPT when parameterized by k when d is a constant. This answers an open problem asked in a recent Dagstuhl seminar (23331). For the special case d = 1, we provide an algorithm with running time 2^𝒪(klog k) nm. Furthermore, we show that even for d = 1, the problem does not admit a polynomial kernel with respect to k + c.

Subject Classification

ACM Subject Classification
  • Theory of computation → Parameterized complexity and exact algorithms
  • Mathematics of computing → Graph algorithms
Keywords
  • Parameterized Algorithms
  • Recursive Understanding
  • Polynomial Kernels
  • Degeneracy

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Faisal N. Abu-Khzam, Rebecca L. Collins, Michael R. Fellows, Michael A. Langston, W. Henry Suters, and Christopher T. Symons. Kernelization algorithms for the vertex cover problem: Theory and experiments. In Proceedings of the 6th Workshop on Algorithm Engineering and Experiments (ALENEX), pages 62-69. SIAM, 2004. Google Scholar
  2. Deepak Ajwani, Rob H. Bisseling, Katrin Casel, Ümit V. Çatalyürek, Cédric Chevalier, Florian Chudigiewitsch, Marcelo Fonseca Faraj, Michael R. Fellows, Lars Gottesbüren, Tobias Heuer, George Karypis, Kamer Kaya, Jakub Lacki, Johannes Langguth, Xiaoye Sherry Li, Ruben Mayer, Johannes Meintrup, Yosuke Mizutani, François Pellegrini, Fabrizio Petrini, Frances A. Rosamond, Ilya Safro, Sebastian Schlag, Christian Schulz, Roohani Sharma, Darren Strash, Blair D. Sullivan, Bora Uçar, and Albert-Jan Yzelman. Open problems in (hyper)graph decomposition. CoRR, abs/2310.11812, 2023. URL: https://arxiv.org/abs/2310.11812.
  3. Stéphane Bessy, Marin Bougeret, Dimitrios M. Thilikos, and Sebastian Wiederrecht. Kernelization for graph packing problems via rainbow matching. In Proceedings of the 34th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3654-3663. SIAM, 2023. Google Scholar
  4. Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds by cross-composition. SIAM Journal on Discrete Mathematics, 28(1):277-305, 2014. Google Scholar
  5. Valentin Bouquet, François Delbot, Christophe Picouleau, and Stéphane Rovedakis. On minimum dominating sets in cubic and (claw, H)-free graphs. CoRR, abs/2002.12232, 2020. URL: https://arxiv.org/abs/2002.12232.
  6. Rajesh Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi, Marcin Pilipczuk, and Michal Pilipczuk. Designing FPT algorithms for cut problems using randomized contractions. SIAM Journal on Computing, 45(4):1171-1229, 2016. Google Scholar
  7. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. Google Scholar
  8. Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Minimum bisection is fixed-parameter tractable. SIAM Journal on Computing, 48(2):417-450, 2019. Google Scholar
  9. Reinhard Diestel. Graph Theory. Springer, 2012. Google Scholar
  10. Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness I: Basic results. SIAM Journal on Computing, 24(4):873-921, 1995. Google Scholar
  11. Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Springer, 2013. Google Scholar
  12. Aleksander Figiel, Anne-Sophie Himmel, André Nichterlein, and Rolf Niedermeier. On 2-clubs in graph-based data clustering: Theory and algorithm engineering. Journal of Graph Algorithms and Applications, 25(1):521-547, 2021. Google Scholar
  13. Harold N. Gabow. Using expander graphs to find vertex connectivity. Journal of the ACM, 53(5):800-844, 2006. Google Scholar
  14. M. R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified NP-complete graph problems. Theoretical Computer Science, 1(3):237-267, 1976. Google Scholar
  15. Jiong Guo, Christian Komusiewicz, Rolf Niedermeier, and Johannes Uhlmann. A more relaxed model for graph-based data clustering: s-plex cluster editing. SIAM Journal on Discrete Mathematics, 24(4):1662-1683, 2010. Google Scholar
  16. David G. Harris and N. S. Narayanaswamy. A faster algorithm for vertex cover parameterized by solution size. In Proceedings of the 41st International Symposium on Theoretical Aspects of Computer Science (STACS), pages 40:1-40:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. Google Scholar
  17. Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponential complexity? Journal of Computer and System Sciences, 63(4):512-530, 2001. Google Scholar
  18. John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties is NP-complete. Journal of Computer and System Sciences, 20(2):219-230, 1980. Google Scholar
  19. Hong Liu, Peng Zhang, and Daming Zhu. On editing graphs into 2-club clusters. In Proceedings of the 2nd Joint International Conference on Frontiers in Algorithmics and Algorithmic Aspects in Information and Management (FAW-AAIM), pages 235-246. Springer, 2012. Google Scholar
  20. Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Reducing CMSO model checking to highly connected graphs. In Proceedings of the 45th International Colloquium on Automata, Languages, and Programming (ICALP), pages 135:1-135:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. Google Scholar
  21. Jan Arne Telle and Yngve Villanger. FPT algorithms for domination in sparse graphs and beyond. Theoretical Computer Science, 770:62-68, 2019. Google Scholar
  22. Dekel Tsur. Faster parameterized algorithm for cluster vertex deletion. Theory of Computing Systems, 65(2):323-343, 2021. Google Scholar
  23. René van Bevern, Hannes Moser, and Rolf Niedermeier. Approximation and tidying - A problem kernel for s-plex cluster vertex deletion. Algorithmica, 62(3-4):930-950, 2012. Google Scholar