eng
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Leibniz International Proceedings in Informatics
1868-8969
2024-08-23
38:1
38:17
10.4230/LIPIcs.MFCS.2024.38
article
Algorithms and Complexity for Path Covers of Temporal DAGs
Chakraborty, Dibyayan
1
Dailly, Antoine
2
Foucaud, Florent
3
https://orcid.org/0000-0001-8198-693X
Klasing, Ralf
4
School of Computing, University of Leeds, UK
Université Clermont-Auvergne, CNRS, Mines de Saint-Étienne, Clermont-Auvergne-INP, LIMOS, 63000 Clermont-Ferrand, France
Université Clermont Auvergne, CNRS, Mines Saint-Étienne, Clermont Auvergne INP, LIMOS, 63000 Clermont-Ferrand, France
Université de Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR 5800, Talence, France
A path cover of a digraph is a collection of paths collectively containing its vertex set. A path cover with minimum cardinality for a directed acyclic graph can be found in polynomial time [Fulkerson, AMS'56; Cáceres et al., SODA'22]. Moreover, Dilworth’s celebrated theorem on chain coverings of partially ordered sets equivalently states that the minimum size of a path cover of a DAG is equal to the maximum size of a set of mutually unreachable vertices. In this paper, we examine how far these classic results can be extended to a dynamic setting.
A temporal digraph has an arc set that changes over discrete time-steps; if the underlying digraph is acyclic, then it is a temporal DAG. A temporal path is a directed path in the underlying digraph, such that the time-steps of arcs are strictly increasing along the path. Two temporal paths are temporally disjoint if they do not occupy any vertex at the same time. A temporal path cover is a collection 𝒞 of temporal paths that covers all vertices, and 𝒞 is temporally disjoint if all its temporal paths are pairwise temporally disjoint. We study the computational complexities of the problems of finding a minimum-size temporal (disjoint) path cover (denoted as Temporal Path Cover and Temporally Disjoint Path Cover).
On the negative side, we show that both Temporal Path Cover and Temporally Disjoint Path Cover are NP-hard even when the underlying DAG is planar, bipartite, subcubic, and there are only two arc-disjoint time-steps. Moreover, Temporally Disjoint Path Cover remains NP-hard even on temporal oriented trees. We also observe that natural temporal analogues of Dilworth’s theorem on these classes of temporal DAGs do not hold.
In contrast, we show that Temporal Path Cover is polynomial-time solvable on temporal oriented trees by a reduction to Clique Cover for (static undirected) weakly chordal graphs (a subclass of perfect graphs for which Clique Cover admits an efficient algorithm). This highlights an interesting algorithmic difference between the two problems. Although it is NP-hard on temporal oriented trees, Temporally Disjoint Path Cover becomes polynomial-time solvable on temporal oriented lines and temporal rooted directed trees.
Motivated by the hardness result on trees, we show that, in contrast, Temporal Path Cover admits an XP time algorithm with respect to parameter t_max + tw, where t_max is the maximum time-step and tw is the treewidth of the underlying static undirected graph; moreover, Temporally Disjoint Path Cover admits an FPT algorithm with respect to the same parameterization.
https://drops.dagstuhl.de/storage/00lipics/lipics-vol306-mfcs2024/LIPIcs.MFCS.2024.38/LIPIcs.MFCS.2024.38.pdf
Temporal Graphs
Dilworth’s Theorem
DAGs
Path Cover
Temporally Disjoint Paths
Algorithms
Oriented Trees
Treewidth