Romeo and Juliet is a two player Rendezvous game played on graphs where one player controls two agents, Romeo (ℛ) and Juliet (𝒥) who aim to meet at a vertex against k adversaries, called dividers, controlled by the other player. The optimization in this game lies at deciding the minimum number of dividers sufficient to restrict ℛ and 𝒥 from meeting in a graph, called the dynamic separation number. We establish that Romeo and Juliet is EXPTIME-complete, settling a conjecture of Fomin, Golovach, and Thilikos [Inf. and Comp., 2023] positively. We also consider the game for directed graphs and establish that although the game is EXPTIME-complete for general directed graphs, it is PSPACE-complete and co-W[2]-hard for directed acyclic graphs.