eng
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Leibniz International Proceedings in Informatics
1868-8969
2024-08-23
78:1
78:15
10.4230/LIPIcs.MFCS.2024.78
article
C_{2k+1}-Coloring of Bounded-Diameter Graphs
Piecyk, Marta
1
https://orcid.org/0000-0001-9162-8300
Warsaw University of Technology, Poland
For a fixed graph H, in the graph homomorphism problem, denoted by Hom(H), we are given a graph G and we have to determine whether there exists an edge-preserving mapping φ: V(G) → V(H). Note that Hom(C₃), where C₃ is the cycle of length 3, is equivalent to 3-Coloring. The question of whether 3-Coloring is polynomial-time solvable on diameter-2 graphs is a well-known open problem. In this paper we study the Hom(C_{2k+1}) problem on bounded-diameter graphs for k ≥ 2, so we consider all other odd cycles than C₃. We prove that for k ≥ 2, the Hom(C_{2k+1}) problem is polynomial-time solvable on diameter-(k+1) graphs - note that such a result for k = 1 would be precisely a polynomial-time algorithm for 3-Coloring of diameter-2 graphs. Furthermore, we give subexponential-time algorithms for diameter-(k+2) and -(k+3) graphs.
We complement these results with a lower bound for diameter-(2k+2) graphs - in this class of graphs the Hom(C_{2k+1}) problem is NP-hard and cannot be solved in subexponential-time, unless the ETH fails.
Finally, we consider another direction of generalizing 3-Coloring on diameter-2 graphs. We consider other target graphs H than odd cycles but we restrict ourselves to diameter 2. We show that if H is triangle-free, then Hom(H) is polynomial-time solvable on diameter-2 graphs.
https://drops.dagstuhl.de/storage/00lipics/lipics-vol306-mfcs2024/LIPIcs.MFCS.2024.78/LIPIcs.MFCS.2024.78.pdf
graph homomorphism
odd cycles
diameter