In this paper, we focus on the uniform bipartition problem in the population protocol model. This problem aims to divide a population into two groups of equal size. In particular, we consider the problem in the context of arbitrary communication graphs. As a result, we investigate the solvability of the uniform bipartition problem with arbitrary communication graphs when agents in the population have designated initial states, under various assumptions such as the existence of a base station, symmetry of the protocol, and fairness of the execution. When the problem is solvable, we present protocols for uniform bipartition. When global fairness is assumed, the space complexity of our solutions is tight.