It is a celebrated fact that a simple random walk on an infinite k-ary tree for k ≥ 2 returns to the initial vertex at most finitely many times during infinitely many transitions; it is called transient. This work points out the fact that a simple random walk on an infinitely growing k-ary tree can return to the initial vertex infinitely many times, it is called recurrent, depending on the growing speed of the tree. Precisely, this paper is concerned with a simple specific model of a random walk on a growing graph (RWoGG), and shows a phase transition between the recurrence and transience of the random walk regarding the growing speed of the graph. To prove the phase transition, we develop a coupling argument, introducing the notion of less homesick as graph growing (LHaGG). We also show some other examples, including a random walk on {0,1}ⁿ with infinitely growing n, of the phase transition between the recurrence and transience. We remark that some graphs concerned in this paper have infinitely growing degrees.