Subgraph enumeration is a fundamental task in computer science. Since the number of subgraphs can be large, some enumeration algorithms exploit compressed representations for efficiency. One such representation is the Zero-suppressed Binary Decision Diagram (ZDD). ZDDs can represent the set of subgraphs compactly and support several poly-time queries, such as counting and random sampling. Researchers have proposed efficient algorithms to construct ZDDs representing the set of subgraphs under several constraints, which yield fruitful results in many applications. Recently, Zero-suppressed Sentential Decision Diagrams (ZSDDs) have been proposed as variants of ZDDs. ZSDDs can be smaller than ZDDs when representing the same set of subgraphs. However, efficient algorithms to construct ZSDDs are known only for specific types of subgraphs: matchings and paths.

We propose a novel framework to construct ZSDDs representing sets of subgraphs under given constraints. Using our framework, we can construct ZSDDs representing several sets of subgraphs such as matchings, paths, cycles, and spanning trees. We show the bound of sizes of constructed ZSDDs by the branch-width of the input graph, which is smaller than that of ZDDs by the path-width. Experiments show that our methods can construct ZSDDs faster than ZDDs and that the constructed ZSDDs are smaller than ZDDs when representing the same set of subgraphs.