Optimal Morphs of Convex Drawings
We give an algorithm to compute a morph between any two convex drawings of the same plane graph. The morph preserves the convexity of the drawing at any time instant and moves each vertex along a piecewise linear curve with linear complexity. The linear bound is asymptotically optimal in the worst case.
Convex Drawings
Planar Graphs
Morphing
Geometric Representations
126-140
Regular Paper
Patrizio
Angelini
Patrizio Angelini
Giordano
Da Lozzo
Giordano Da Lozzo
Fabrizio
Frati
Fabrizio Frati
Anna
Lubiw
Anna Lubiw
Maurizio
Patrignani
Maurizio Patrignani
Vincenzo
Roselli
Vincenzo Roselli
10.4230/LIPIcs.SOCG.2015.126
S. Alamdari, P. Angelini, T. M. Chan, G. Di Battista, F. Frati, A. Lubiw, M. Patrignani, V. Roselli, S. Singla, and B. T. Wilkinson. Morphing planar graph drawings with a polynomial number of steps. In SODA, pages 1656-1667, 2013.
G. Aloupis, L. Barba, P. Carmi, V. Dujmovic, F. Frati, and P. Morin. Compatible connectivity-augmentation of planar disconnected graphs. In SODA, pages 1602-1615, 2015.
P. Angelini, G. Da Lozzo, G. Di Battista, F. Frati, M. Patrignani, and V. Roselli. Morphing planar graph drawings optimally. In ICALP, volume 8572 of LNCS, pages 126-137, 2014.
P. Angelini, F. Frati, M. Patrignani, and V. Roselli. Morphing planar graph drawings efficiently. In GD, volume 8242 of LNCS, pages 49-60, 2013.
I. Bárány and G. Rote. Strictly convex drawings of planar graphs. Documenta Mathematica, 11:369-391, 2006.
D. Barnette and B. Grünbaum. On Steinitz’s theorem concerning convex 3-polytopes and on some properties of planar graphs. In Many Facets of Graph Theory, volume 110 of Lecture Notes in Mathematics, pages 27-40. Springer, 1969.
F. Barrera-Cruz, P. Haxell, and A. Lubiw. Morphing planar graph drawings with unidirectional moves. Mexican Conference on Discr. Math. and Comput. Geom., 2013.
N. Bonichon, S. Felsner, and M. Mosbah. Convex drawings of 3-connected plane graphs. Algorithmica, 47(4):399-420, 2007.
S. Cairns. Deformations of plane rectilinear complexes. Am. Math. Mon., 51:247-252, 1944.
N. Chiba, T. Yamanouchi, and T. Nishizeki. Linear algorithms for convex drawings of planar graphs. In Progress in Graph Theory, pages 153-173. Academic Press, New York, NY, 1984.
M. Chrobak and G. Kant. Convex grid drawings of 3-connected planar graphs. Int. J. Comput. Geometry Appl., 7(3):211-223, 1997.
C. Erten, S. G. Kobourov, and C. Pitta. Intersection-free morphing of planar graphs. In GD, volume 2912 of LNCS, pages 320-331, 2004.
C. Friedrich and P. Eades. Graph drawing in motion. J. Graph Alg. Ap., 6:353-370, 2002.
C. Gotsman and V. Surazhsky. Guaranteed intersection-free polygon morphing. Computers & Graphics, 25(1):67-75, 2001.
B. Grunbaum and G.C. Shephard. The geometry of planar graphs. Camb. Univ. Pr., 1981.
S. H. Hong and H. Nagamochi. Convex drawings of hierarchical planar graphs and clustered planar graphs. J. Discrete Algorithms, 8(3):282-295, 2010.
S. H. Hong and H. Nagamochi. A linear-time algorithm for symmetric convex drawings of internally triconnected plane graphs. Algorithmica, 58(2):433-460, 2010.
M. S. Rahman, S. I. Nakano, and T. Nishizeki. Rectangular grid drawings of plane graphs. Comput. Geom., 10(3):203-220, 1998.
M. S. Rahman, T. Nishizeki, and S. Ghosh. Rectangular drawings of planar graphs. J. of Algorithms, 50:62-78, 2004.
J. M. Schmidt. Contractions, removals, and certifying 3-connectivity in linear time. SIAM J. Comput., 42(2):494-535, 2013.
V. Surazhsky and C. Gotsman. Controllable morphing of compatible planar triangulations. ACM Trans. Graph, 20(4):203-231, 2001.
V. Surazhsky and C. Gotsman. Intrinsic morphing of compatible triangulations. Internat. J. of Shape Model., 9:191-201, 2003.
C. Thomassen. Planarity and duality of finite and infinite graphs. J. Comb. Theory, Ser. B, 29(2):244-271, 1980.
C. Thomassen. Deformations of plane graphs. J. Comb. Th. Ser. B, 34(3):244-257, 1983.
C. Thomassen. Plane representations of graphs. In J. A. Bondy and U. S. R. Murty, editors, Progress in Graph Theory, pages 43-69. Academic Press, New York, NY, 1984.
Creative Commons Attribution 3.0 Unported license
https://creativecommons.org/licenses/by/3.0/legalcode