eng
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Leibniz International Proceedings in Informatics
1868-8969
2015-06-12
476
490
10.4230/LIPIcs.SOCG.2015.476
article
On Generalized Heawood Inequalities for Manifolds: A Van Kampen-Flores-type Nonembeddability Result
Goaoc, Xavier
Mabillard, Isaac
Paták, Pavel
Patáková, Zuzana
Tancer, Martin
Wagner, Uli
The fact that the complete graph K_5 does not embed in the plane has been generalized in two independent directions. On the one hand, the solution of the classical Heawood problem for graphs on surfaces established that the complete graph K_n embeds in a closed surface M if and only if (n-3)(n-4) is at most 6b_1(M), where b_1(M) is the first Z_2-Betti number of M. On the other hand, Van Kampen and Flores proved that the k-skeleton of the n-dimensional simplex (the higher-dimensional analogue of K_{n+1}) embeds in R^{2k} if and only if n is less or equal to 2k+2.
Two decades ago, Kuhnel conjectured that the k-skeleton of the n-simplex embeds in a compact, (k-1)-connected 2k-manifold with kth Z_2-Betti number b_k only if the following generalized Heawood inequality holds: binom{n-k-1}{k+1} is at most binom{2k+1}{k+1} b_k. This is a common generalization of the case of graphs on surfaces as well as the Van Kampen--Flores theorem.
In the spirit of Kuhnel's conjecture, we prove that if the k-skeleton of the n-simplex embeds in a 2k-manifold with kth Z_2-Betti number b_k, then n is at most 2b_k binom{2k+2}{k} + 2k + 5. This bound is weaker than the generalized Heawood inequality, but does not require the assumption that M is (k-1)-connected. Our proof uses a result of Volovikov about maps that satisfy a certain homological triviality condition.
https://drops.dagstuhl.de/storage/00lipics/lipics-vol034-socg2015/LIPIcs.SOCG.2015.476/LIPIcs.SOCG.2015.476.pdf
Heawood Inequality
Embeddings
Van Kampen–Flores
Manifolds