A Geometric Approach for the Upper Bound Theorem for Minkowski Sums of Convex Polytopes
We derive tight expressions for the maximum number of k-faces, k=0,...,d-1, of the Minkowski sum, P_1+...+P_r, of r convex d-polytopes P_1,...,P_r in R^d, where d >= 2 and r < d, as a (recursively defined) function on the number of vertices of the polytopes. Our results coincide with those recently proved by Adiprasito and Sanyal [1]. In contrast to Adiprasito and Sanyal's approach, which uses tools from Combinatorial Commutative Algebra, our approach is purely geometric and uses basic notions such as f- and h-vector calculus, stellar subdivisions and shellings, and generalizes the methodology used in [10] and [9] for proving upper bounds on the f-vector of the Minkowski sum of two and three convex polytopes, respectively. The key idea behind our approach is to express the Minkowski sum P_1+...+P_r as a section of the Cayley polytope C of the summands; bounding the k-faces of P_1+...+P_r reduces to bounding the subset of the (k+r-1)-faces of C that contain vertices from each of the r polytopes. We end our paper with a sketch of an explicit construction that establishes the tightness of the upper bounds.
Convex polytopes
Minkowski sum
upper bound
81-95
Regular Paper
Menelaos I.
Karavelas
Menelaos I. Karavelas
Eleni
Tzanaki
Eleni Tzanaki
10.4230/LIPIcs.SOCG.2015.81
Karim A. Adiprasito and Raman Sanyal. Relative Stanley-Reisner theory and Upper Bound Theorems for Minkowski sums, 2014. URL: http://arxiv.org/abs/1405.7368v3.
http://arxiv.org/abs/1405.7368v3
G. Ewald and G. C. Shephard. Stellar Subdivisions of Boundary Complexes of Convex Polytopes. Mathematische Annalen, 210:7-16, 1974.
Günter Ewald. Combinatorial Convexity and Algebraic Geometry. Graduate Texts in Mathematics. Springer, 1996.
Efi Fogel, Dan Halperin, and Christophe Weibel. On the Exact Maximum Complexity of Minkowski Sums of Polytopes. Discrete Comput. Geom., 42:654-669, 2009.
Komei Fukuda and Christophe Weibel. f-vectors of Minkowski Additions of Convex Polytopes. Discrete Comput. Geom., 37(4):503-516, 2007.
R. L. Graham, M. Grotschel, and L. Lovasz. Handbook of Combinatorics, volume 2. MIT Press, North Holland, 1995.
Peter Gritzmann and Bernd Sturmfels. Minkowski Addition of Polytopes: Computational Complexity and Applications to Gröbner bases. SIAM J. Disc. Math., 6(2):246-269, 1993.
Birkett Huber, Jörg Rambau, and Francisco Santos. The Cayley Trick, lifting subdivisions and the Bohne-Dress theorem on zonotopal tilings. J. Eur. Math. Soc., 2(2):179-198, 2000.
Menelaos I. Karavelas, Christos Konaxis, and Eleni Tzanaki. The maximum number of faces of the Minkowski sum of three convex polytopes. J. Comput. Geom., 6(1):21-74, 2015.
Menelaos I. Karavelas and Eleni Tzanaki. The maximum number of faces of the Minkowski sum of two convex polytopes. In Proceedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms (SODA'12), pages 11-28, 2012.
Menelaos I. Karavelas and Eleni Tzanaki. A geometric approach for the upper bound theorem for Minkowski sums of convex polytopes, 2015. URL: http://arxiv.org/abs/1502.02265v2.
http://arxiv.org/abs/1502.02265v2
Jiří Matoušek. Lectures on Discrete Geometry. Graduate Texts in Mathematics. Springer-Verlag New York, Inc., New York, 2002.
B. Matschke, J. Pfeifle, and V. Pilaud. Prodsimplicial-neighborly polytopes. Discrete Comput. Geom., 46(1):100-131, 2011.
P. McMullen. The maximum numbers of faces of a convex polytope. Mathematika, 17:179-184, 1970.
Raman Sanyal. Topological obstructions for vertex numbers of Minkowski sums. J. Comb. Theory, Ser. A, 116(1):168-179, 2009.
Christophe Weibel. Maximal f-vectors of Minkowski Sums of Large Numbers of Polytopes. Discrete Comput. Geom., 47(3):519-537, 2012.
Günter M. Ziegler. Lectures on Polytopes, volume 152 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.
Creative Commons Attribution 3.0 Unported license
https://creativecommons.org/licenses/by/3.0/legalcode