{"@context":"https:\/\/schema.org\/","@type":"ScholarlyArticle","@id":"#article6565","name":"Testing Linear-Invariant Non-Linear Properties","abstract":"We consider the task of testing properties of Boolean functions that are invariant under linear transformations of the Boolean cube. Previous work in property testing, including the linearity test and the test for Reed-Muller codes, has mostly focused on such tasks for linear properties. The one exception is a test due to Green for {}``triangle freeness'': A function $f:\\mathbb{F}_{2}^{n}\\to\\mathbb{F}_{2}$ satisfies this property if $f(x),f(y),f(x+y)$ do not all equal $1$, for any pair $x,y\\in\\mathbb{F}_{2}^{n}$.\r\n\r\nHere we extend this test to a more systematic study of testing for linear-invariant non-linear properties. We consider properties that are described by a single forbidden pattern (and its linear transformations), i.e., a property is given by $k$ points $v_{1},\\ldots,v_{k}\\in\\mathbb{F}_{2}^{k}$ and $f:\\mathbb{F}_{2}^{n}\\to\\mathbb{F}_{2}$ satisfies the property that if for all linear maps $L:\\mathbb{F}_{2}^{k}\\to\\mathbb{F}_{2}^{n}$ it is the case that $f(L(v_{1})),\\ldots,f(L(v_{k}))$ do not all equal $1$. We show that this property is testable if the underlying matroid specified by $v_{1},\\ldots,v_{k}$ is a graphic matroid. This extends Green's result to an infinite class of new properties.\r\n\r\nOur techniques extend those of Green and in particular we establish a link between the notion of {}``1-complexity linear systems'' of Green and Tao, and graphic matroids, to derive the results.","author":[{"@type":"Person","name":"Bhattacharyya, Arnab","givenName":"Arnab","familyName":"Bhattacharyya"},{"@type":"Person","name":"Chen, Victor","givenName":"Victor","familyName":"Chen"},{"@type":"Person","name":"Sudan, Madhu","givenName":"Madhu","familyName":"Sudan"},{"@type":"Person","name":"Xie, Ning","givenName":"Ning","familyName":"Xie"}],"position":10,"pageStart":135,"pageEnd":146,"dateCreated":"2009-02-19","datePublished":"2009-02-19","isAccessibleForFree":true,"license":"https:\/\/creativecommons.org\/licenses\/by-nd\/3.0\/legalcode","copyrightHolder":[{"@type":"Person","name":"Bhattacharyya, Arnab","givenName":"Arnab","familyName":"Bhattacharyya"},{"@type":"Person","name":"Chen, Victor","givenName":"Victor","familyName":"Chen"},{"@type":"Person","name":"Sudan, Madhu","givenName":"Madhu","familyName":"Sudan"},{"@type":"Person","name":"Xie, Ning","givenName":"Ning","familyName":"Xie"}],"copyrightYear":"2009","accessMode":"textual","accessModeSufficient":"textual","creativeWorkStatus":"Published","inLanguage":"en-US","sameAs":"https:\/\/doi.org\/10.4230\/LIPIcs.STACS.2009.1823","publisher":"Schloss Dagstuhl \u2013 Leibniz-Zentrum f\u00fcr Informatik","isPartOf":{"@type":"PublicationVolume","@id":"#volume6206","volumeNumber":3,"name":"26th International Symposium on Theoretical Aspects of Computer Science","dateCreated":"2009-02-19","datePublished":"2009-02-19","editor":[{"@type":"Person","name":"Albers, Susanne","givenName":"Susanne","familyName":"Albers"},{"@type":"Person","name":"Marion, Jean-Yves","givenName":"Jean-Yves","familyName":"Marion"}],"isAccessibleForFree":true,"publisher":"Schloss Dagstuhl \u2013 Leibniz-Zentrum f\u00fcr Informatik","hasPart":"#article6565","isPartOf":{"@type":"Periodical","@id":"#series116","name":"Leibniz International Proceedings in Informatics","issn":"1868-8969","isAccessibleForFree":true,"publisher":"Schloss Dagstuhl \u2013 Leibniz-Zentrum f\u00fcr Informatik","hasPart":"#volume6206"}}}