eng
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Leibniz International Proceedings in Informatics
1868-8969
2016-02-16
38:1
38:13
10.4230/LIPIcs.STACS.2016.38
article
The Complexity of the Hamilton Cycle Problem in Hypergraphs of High Minimum Codegree
Garbe, Frederik
Mycroft, Richard
We consider the complexity of the Hamilton cycle decision problem when restricted to k-uniform hypergraphs H of high minimum codegree delta(H). We show that for tight Hamilton cycles this problem is NP-hard even when restricted to k-uniform hypergraphs H with delta(H) >= n/2 - C, where n is the order of H and C is a constant which depends only on k. This answers a question raised by Karpinski, Rucinski and Szymanska. Additionally we give a polynomial-time algorithm which, for a sufficiently small constant epsilon > 0, determines whether or not a 4-uniform hypergraph H on n vertices with delta(H) >= n/2 - epsilon * n contains a Hamilton 2-cycle. This demonstrates that some looser Hamilton cycles exhibit interestingly different behaviour compared to tight Hamilton cycles. A key part of the proof is a precise characterisation of all 4-uniform hypergraphs H on n vertices with delta(H) >= n/2 - epsilon * n which do not contain a Hamilton 2-cycle; this may be of independent interest. As an additional corollary of this characterisation, we obtain an exact Dirac-type bound for the existence of a Hamilton 2-cycle in a large 4-uniform hypergraph.
https://drops.dagstuhl.de/storage/00lipics/lipics-vol047-stacs2016/LIPIcs.STACS.2016.38/LIPIcs.STACS.2016.38.pdf
Hamilton cycles
hypergraphs
graph algorithms