Let H be a (non-empty) graph on n vertices, possibly containing isolated vertices. Let f_H(G) = 1 iff the input graph G on n vertices contains H as a (not necessarily induced) subgraph. Let alpha_H denote the cardinality of a maximum independent set of H. In this paper we show: Q(f_H) = Omega( sqrt{alpha_H * n}), where Q(f_H) denotes the quantum query complexity of f_H.

As a consequence we obtain lower bounds for Q(f_H) in terms of several other parameters of H such as the average degree, minimum vertex cover, chromatic number, and the critical probability.

We also use the above bound to show that Q(f_H) = Omega(n^{3/4}) for any H, improving on the previously best known bound of Omega(n^{2/3}) [M. Santha/A. Chi-Chih Yao, unpublished manuscript]. Until very recently, it was believed that the quantum query complexity is at least square root of the randomized one. Our Omega(n^{3/4}) bound for Q(f_H) matches the square root of the current best known bound for the randomized query complexity of f_H, which is Omega(n^{3/2}) due to Groger. Interestingly, the randomized bound of Omega(alpha_H * n) for f_H still remains open.

We also study the Subgraph Homomorphism Problem, denoted by f_{[H]}, and show that Q(f_{[H]}) = Omega(n).

Finally we extend our results to the 3-uniform hypergraphs. In particular, we show an Omega(n^{4/5}) bound for quantum query complexity of the Subgraph Isomorphism, improving on the previously known Omega(n^{3/4}) bound. For the Subgraph Homomorphism, we obtain an Omega(n^{3/2}) bound for the same.