We consider the problem of efficiently scheduling jobs with precedence constraints on a set of identical machines in the presence of a uniform communication delay. Such precedence-constrained jobs can be modeled as a directed acyclic graph, G = (V, E). In this setting, if two precedence-constrained jobs u and v, with v dependent on u (u ≺ v), are scheduled on different machines, then v must start at least ρ time units after u completes. The scheduling objective is to minimize makespan, i.e. the total time from when the first job starts to when the last job finishes. The focus of this paper is to provide an efficient approximation algorithm with near-linear running time. We build on the algorithm of Lepere and Rapine [STACS 2002] for this problem to give an O((ln ρ)/(ln ln ρ))-approximation algorithm that runs in Õ(|V|+|E|) time.