Multivariate Exploration of Metric Dilation

Authors Aritra Banik , Fedor V. Fomin , Petr A. Golovach , Tanmay Inamdar , Satyabrata Jana , Saket Saurabh



PDF
Thumbnail PDF

File

LIPIcs.STACS.2025.14.pdf
  • Filesize: 1.09 MB
  • 17 pages

Document Identifiers

Author Details

Aritra Banik
  • National Institute of Science, Education and Research, An OCC of Homi Bhabha National Institute, Bhubaneswar, India
Fedor V. Fomin
  • University of Bergen, Norway
Petr A. Golovach
  • University of Bergen, Norway
Tanmay Inamdar
  • Indian Institute of Technology Jodhpur, India
Satyabrata Jana
  • University of Warwick, UK
Saket Saurabh
  • The Institute of Mathematical Sciences, HBNI, Chennai, India
  • University of Bergen, Norway

Cite As Get BibTex

Aritra Banik, Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Satyabrata Jana, and Saket Saurabh. Multivariate Exploration of Metric Dilation. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 14:1-14:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.STACS.2025.14

Abstract

Let G be a weighted graph embedded in a metric space (M, d_M). The vertices of G correspond to the points in M, with the weight of each edge uv being the distance d_M(u,v) between their respective points in M. The dilation (or stretch) of G is defined as the minimum factor t such that, for any pair of vertices u,v, the distance between u and v - represented by the weight of a shortest u,v-path - is at most t⋅ d_M(u,v). We study Dilation t-Augmentation, where the objective is, given a metric M, a graph G, and numerical values k and t, to determine whether G can be transformed into a graph with dilation t by adding at most k edges.
Our primary focus is on the scenario where the metric M is the shortest path metric of an unweighted graph Γ. Even in this specific case, Dilation t-Augmentation remains computationally challenging. In particular, the problem is W[2]-hard parameterized by k when Γ is a complete graph, already for t = 2. Our main contribution lies in providing new insights into the impact of combinations of various parameters on the computational complexity of the problem. We establish the following.  
- The parameterized dichotomy of the problem with respect to dilation t, when the graph G is sparse: Parameterized by k, the problem is FPT for graphs excluding a biclique K_{d,d} as a subgraph for t ≤ 2 and the problem is W[1]-hard for t ≥ 3 even if G is a forest consisting of disjoint stars. 
- The problem is FPT parameterized by the combined parameter k+t+Δ, where Δ is the maximum degree of the graph G or Γ.

Subject Classification

ACM Subject Classification
  • Theory of computation → Design and analysis of algorithms
Keywords
  • Metric dilation
  • geometric spanner
  • fixed-parameter tractability

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Boris Aronov, Mark de Berg, Otfried Cheong, Joachim Gudmundsson, Herman J. Haverkort, Michiel H. M. Smid, and Antoine Vigneron. Sparse geometric graphs with small dilation. Comput. Geom., 40(3):207-219, 2008. URL: https://doi.org/10.1016/J.COMGEO.2007.07.004.
  2. Aritra Banik, Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Satyabrata Jana, and Saket Saurabh. Multivariate exploration of metric dilation, 2025. URL: https://arxiv.org/abs/2501.04555.
  3. Édouard Bonnet, Nicolas Bousquet, Stéphan Thomassé, and Rémi Watrigant. When maximum stable set can be solved in FPT time. In Pinyan Lu and Guochuan Zhang, editors, 30th International Symposium on Algorithms and Computation, ISAAC 2019, December 8-11, 2019, Shanghai University of Finance and Economics, Shanghai, China, volume 149 of LIPIcs, pages 49:1-49:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPICS.ISAAC.2019.49.
  4. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  5. Reinhard Diestel. Graph theory. Springer (print edition); Reinhard Diestel (eBooks), 2024. Google Scholar
  6. Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in Computer Science. Springer, 1999. URL: https://doi.org/10.1007/978-1-4612-0515-9.
  7. Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17:449-467, 1965. Google Scholar
  8. Mohammad Farshi, Panos Giannopoulos, and Joachim Gudmundsson. Improving the stretch factor of a geometric network by edge augmentation. SIAM J. Comput., 38(1):226-240, 2008. URL: https://doi.org/10.1137/050635675.
  9. Michael R Fellows, Danny Hermelin, Frances Rosamond, and Stéphane Vialette. On the fixed-parameter intractability and tractability of multiple-interval graph properties. Theoretical Computer Science. v410, pages 53-61, 2007. Google Scholar
  10. Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2006. URL: https://doi.org/10.1007/3-540-29953-X.
  11. Yong Gao, Donovan R. Hare, and James Nastos. The parametric complexity of graph diameter augmentation. Discret. Appl. Math., 161(10-11):1626-1631, 2013. URL: https://doi.org/10.1016/J.DAM.2013.01.016.
  12. Panos Giannopoulos, Rolf Klein, Christian Knauer, Martin Kutz, and Dániel Marx. Computing geometric minimum-dilation graphs is np-hard. Int. J. Comput. Geom. Appl., 20(2):147-173, 2010. URL: https://doi.org/10.1142/S0218195910003244.
  13. Joachim Gudmundsson and Michiel H. M. Smid. On spanners of geometric graphs. Int. J. Found. Comput. Sci., 20(1):135-149, 2009. URL: https://doi.org/10.1142/S0129054109006486.
  14. Joachim Gudmundsson and Sampson Wong. Improving the dilation of a metric graph by adding edges. ACM Trans. Algorithms, 18(3):20:1-20:20, 2022. URL: https://doi.org/10.1145/3517807.
  15. Yusuke Kobayashi. NP-hardness and fixed-parameter tractability of the minimum spanner problem. Theor. Comput. Sci., 746:88-97, 2018. URL: https://doi.org/10.1016/J.TCS.2018.06.031.
  16. Yusuke Kobayashi. An FPT algorithm for minimum additive spanner problem. In 37th International Symposium on Theoretical Aspects of Computer Science, STACS 2020, March 10-13, 2020, Montpellier, France, volume 154 of LIPIcs, pages 11:1-11:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPICS.STACS.2020.11.
  17. Jun Luo and Christian Wulff-Nilsen. Computing best and worst shortcuts of graphs embedded in metric spaces. In Seok-Hee Hong, Hiroshi Nagamochi, and Takuro Fukunaga, editors, Algorithms and Computation, 19th International Symposium, ISAAC 2008, Gold Coast, Australia, December 15-17, 2008. Proceedings, volume 5369 of Lecture Notes in Computer Science, pages 764-775. Springer, 2008. URL: https://doi.org/10.1007/978-3-540-92182-0_67.
  18. Giri Narasimhan and Michiel Smid. Geometric spanner networks. Cambridge University Press, 2007. Google Scholar
  19. David Peleg and Alejandro A. Schäffer. Graph spanners. J. Graph Theory, 13(1):99-116, 1989. URL: https://doi.org/10.1002/JGT.3190130114.
  20. Christian Wulff-Nilsen. Computing the dilation of edge-augmented graphs in metric spaces. Comput. Geom., 43(2):68-72, 2010. URL: https://doi.org/10.1016/J.COMGEO.2009.03.008.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail