LIPIcs.STACS.2025.14.pdf
- Filesize: 1.09 MB
- 17 pages
Let G be a weighted graph embedded in a metric space (M, d_M). The vertices of G correspond to the points in M, with the weight of each edge uv being the distance d_M(u,v) between their respective points in M. The dilation (or stretch) of G is defined as the minimum factor t such that, for any pair of vertices u,v, the distance between u and v - represented by the weight of a shortest u,v-path - is at most t⋅ d_M(u,v). We study Dilation t-Augmentation, where the objective is, given a metric M, a graph G, and numerical values k and t, to determine whether G can be transformed into a graph with dilation t by adding at most k edges. Our primary focus is on the scenario where the metric M is the shortest path metric of an unweighted graph Γ. Even in this specific case, Dilation t-Augmentation remains computationally challenging. In particular, the problem is W[2]-hard parameterized by k when Γ is a complete graph, already for t = 2. Our main contribution lies in providing new insights into the impact of combinations of various parameters on the computational complexity of the problem. We establish the following. - The parameterized dichotomy of the problem with respect to dilation t, when the graph G is sparse: Parameterized by k, the problem is FPT for graphs excluding a biclique K_{d,d} as a subgraph for t ≤ 2 and the problem is W[1]-hard for t ≥ 3 even if G is a forest consisting of disjoint stars. - The problem is FPT parameterized by the combined parameter k+t+Δ, where Δ is the maximum degree of the graph G or Γ.
Feedback for Dagstuhl Publishing