How to Play the Accordion: Uniformity and the (Non-)Conservativity of the Linear Approximation of the λ-Calculus

Authors Rémy Cerda , Lionel Vaux Auclair



PDF
Thumbnail PDF

File

LIPIcs.STACS.2025.23.pdf
  • Filesize: 1.06 MB
  • 21 pages

Document Identifiers

Author Details

Rémy Cerda
  • Aix-Marseille Université, CNRS, I2M, France
  • Université Paris Cité, CNRS, IRIF, F-75013, Paris, France
Lionel Vaux Auclair
  • Aix-Marseille Université, CNRS, I2M, France

Cite As Get BibTex

Rémy Cerda and Lionel Vaux Auclair. How to Play the Accordion: Uniformity and the (Non-)Conservativity of the Linear Approximation of the λ-Calculus. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 23:1-23:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.STACS.2025.23

Abstract

Twenty years after its introduction by Ehrhard and Regnier, differentiation in λ-calculus and in linear logic is now a celebrated tool. In particular, it allows to write the Taylor formula in various λ-calculi, hence providing a theory of linear approximations for these calculi. In the standard λ-calculus, this linear approximation is expressed by results stating that the (possibly) infinitary β-reduction of λ-terms is simulated by the reduction of their Taylor expansion: in terms of rewriting systems, the resource reduction (operating on Taylor approximants) is an extension of the β-reduction.
In this paper, we address the converse property, conservativity: are there reductions of the Taylor approximants that do not arise from an actual β-reduction of the approximated term? We show that if we restrict the setting to finite terms and β-reduction sequences, then the linear approximation is conservative. However, as soon as one allows infinitary reduction sequences this property is broken. We design a counter-example, the Accordion. Then we show how restricting the reduction of the Taylor approximants allows to build a conservative extension of the β-reduction preserving good simulation properties. This restriction relies on uniformity, a property that was already at the core of Ehrhard and Regnier’s pioneering work.

Subject Classification

ACM Subject Classification
  • Theory of computation → Rewrite systems
  • Theory of computation → Lambda calculus
  • Theory of computation → Proof theory
  • Theory of computation → Linear logic
Keywords
  • program approximation
  • quantitative semantics
  • lambda-calculus
  • linear approximation
  • Taylor expansion
  • conservativity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Davide Barbarossa. Resource approximation for the λμ-calculus. In Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science, 2022. URL: https://doi.org/10.1145/3531130.3532469.
  2. Davide Barbarossa and Giulio Manzonetto. Taylor Subsumes Scott, Berry, Kahn and Plotkin. In 47th Symposium on Principles of Programming Languages, 2020. URL: https://doi.org/10.1145/3371069.
  3. Henk P. Barendregt. The Lambda Calculus. Elsevier, Amsterdam, 2 edition, 1984. Google Scholar
  4. Henk P. Barendregt and Giulio Manzonetto. A Lambda Calculus Satellite. Number 94 in Mathematical logic and foundations. College publications, 2022. Google Scholar
  5. Lison Blondeau-Patissier, Pierre Clairambault, and Lionel Vaux Auclair. Extensional Taylor Expansion, 2024. URL: https://arxiv.org/abs/2305.08489v2.
  6. Rémy Cerda. Nominal algebraic-coalgebraic data types, with applications to infinitary λ-calculi. To appear in the proceedings of the 12th International Workshop on Fixed Points in Computer Science (FICS'24). Google Scholar
  7. Rémy Cerda. Taylor Approximation and Infinitary λ-Calculi. PhD thesis, Aix-Marseille Université, 2024. URL: https://hal.science/tel-04664728.
  8. Rémy Cerda and Lionel Vaux Auclair. Finitary Simulation of Infinitary β-Reduction via Taylor Expansion, and Applications. Logical Methods in Computer Science, 19, 2023. URL: https://doi.org/10.46298/LMCS-19(4:34)2023.
  9. Jules Chouquet and Christine Tasson. Taylor expansion for call-by-push-value. In 28th EACSL Annual Conference on Computer Science Logic, 2020. URL: https://doi.org/10.4230/LIPICS.CSL.2020.16.
  10. Ugo Dal Lago and Thomas Leventis. On the Taylor Expansion of Probabilistic Lambda Terms. In Herman Geuvers, editor, 4th International Conference on Fromal Structures for Computation and Deduction, 2019. URL: https://doi.org/10.4230/LIPIcs.FSCD.2019.13.
  11. Daniel de Carvalho. Execution time of λ-terms via denotational semantics and intersection types. Mathematical Structures in Computer Science, 28(7):1169-1203, 2017. URL: https://doi.org/10.1017/s0960129516000396.
  12. Aloÿs Dufour and Damiano Mazza. Böhm and Taylor for All! In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024), 2024. URL: https://doi.org/10.4230/LIPICS.FSCD.2024.29.
  13. Thomas Ehrhard. On Köthe sequence spaces and linear logic. Mathematical Structures in Computer Science, 12(5):579-623, 2002. URL: https://doi.org/10.1017/s0960129502003729.
  14. Thomas Ehrhard. Finiteness spaces. Mathematical Structures in Computer Science, 15(4):615-646, 2005. URL: https://doi.org/10.1017/S0960129504004645.
  15. Thomas Ehrhard and Giulio Guerrieri. The bang calculus: an untyped lambda-calculus generalizing call-by-name and call-by-value. In Proceedings of the 18th International Symposium on Principles and Practice of Declarative Programming, 2016. URL: https://doi.org/10.1145/2967973.2968608.
  16. Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. Theoretical Computer Science, 309(1):1-41, 2003. URL: https://doi.org/10.1016/S0304-3975(03)00392-X.
  17. Thomas Ehrhard and Laurent Regnier. Differential interaction nets. Electronic Notes in Theoretical Computer Science, 123:35-74, 2005. URL: https://doi.org/10.1016/j.entcs.2004.06.060.
  18. Thomas Ehrhard and Laurent Regnier. Böhm Trees, Krivine’s Machine and the Taylor Expansion of Lambda-Terms. In Arnold Beckmann, Ulrich Berger, Benedikt Löwe, and John V. Tucker, editors, Logical Approaches to Computational Barriers, pages 186-197. Springer, 2006. URL: https://doi.org/10.1007/11780342_20.
  19. Thomas Ehrhard and Laurent Regnier. Uniformity and the Taylor expansion of ordinary lambda-terms. Theoretical Computer Science, 403(2):347-372, 2008. URL: https://doi.org/10.1016/j.tcs.2008.06.001.
  20. Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987. URL: https://doi.org/10.1016/0304-3975(87)90045-4.
  21. Martin Hyland. A syntactic characterization of the equality in some models for the lambda calculus. Journal of the London Mathematical Society, s2-12:361-370, 1976. URL: https://doi.org/10.1112/jlms/s2-12.3.361.
  22. Richard Kennaway, Jan Willem Klop, Ronan Sleep, and Fer-Jan de Vries. Infinitary lambda calculus. Theoretical Computer Science, 175(1):93-125, 1997. URL: https://doi.org/10.1016/S0304-3975(96)00171-5.
  23. Axel Kerinec, Giulio Manzonetto, and Michele Pagani. Revisiting Call-by-value Böhm trees in light of their Taylor expansion. Logical Methods in Computer Science, 16:1860-5974, 2020. URL: https://lmcs.episciences.org/6638, URL: https://doi.org/10.23638/LMCS-16(3:6)2020.
  24. Axel Kerinec and Lionel Vaux Auclair. The algebraic λ-calculus is a conservative extension of the ordinary λ-calculus, 2023. https://arxiv.org/abs/2305.01067, URL: https://doi.org/10.48550/arXiv.2305.01067.
  25. Jean-Louis Krivine. Lambda-calcul, types et modèles. Masson, 1990. Google Scholar
  26. Damiano Mazza. An axiomatic notion of approximation for programming languages and machines, 2021. Unpublished. URL: https://www.lipn.fr/~mazza/papers/ApxAxiom.pdf.
  27. Jean-Baptiste Midez. Une étude combinatoire du lambda-calcul avec ressources uniforme. PhD thesis, Aix-Marseille Université, 2014. URL: http://www.theses.fr/2014AIXM4093.
  28. Gerd Mitschke. The standardization theorem for λ‐calculus. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 25:29-31, 1979. URL: https://doi.org/10.1002/malq.19790250104.
  29. Dana Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY. Theoretical Computer Science, 121(1–2):411-440, 1993. URL: https://doi.org/10.1016/0304-3975(93)90095-b.
  30. Terese. Term Rewriting Systems. Cambridge University Press, 2003. Google Scholar
  31. Lionel Vaux. Normalizing the Taylor expansion of non-deterministic λ-terms, via parallel reduction of resource vectors. Logical Methods in Computer Science, 15:9:1-9:57, 2019. URL: https://doi.org/10.23638/LMCS-15(3:9)2019.
  32. Christopher P. Wadsworth. Approximate reduction and lambda calculus models. SIAM Journal on Computing, 7(3):337-356, 1978. URL: https://doi.org/10.1137/0207028.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail