Can You Link Up With Treewidth?

Authors Radu Curticapean , Simon Döring , Daniel Neuen , Jiaheng Wang



PDF
Thumbnail PDF

File

LIPIcs.STACS.2025.28.pdf
  • Filesize: 1.34 MB
  • 24 pages

Document Identifiers

Author Details

Radu Curticapean
  • University of Regensburg, Germany
  • IT University of Copenhagen, Denmark
Simon Döring
  • Max Planck Institute for Informatics, Saarbrücken, Germany
  • Saarland University (SIC), Saarbrücken, Germany
Daniel Neuen
  • University of Regensburg, Germany
  • Max Planck Institute for Informatics, Saarbrücken, Germany
Jiaheng Wang
  • University of Regensburg, Germany

Acknowledgements

The title was found with the help of a popular LLM. We thank Cornelius Brand for pointing out a connection to extension complexity.

Cite As Get BibTex

Radu Curticapean, Simon Döring, Daniel Neuen, and Jiaheng Wang. Can You Link Up With Treewidth?. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 28:1-28:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.STACS.2025.28

Abstract

A central result by Marx [ToC '10] constructs k-vertex graphs H of maximum degree 3 such that n^o(k/log k) time algorithms for detecting colorful H-subgraphs would refute the Exponential-Time Hypothesis (ETH). This result is widely used to obtain almost-tight conditional lower bounds for parameterized problems under ETH.
Our first contribution is a new and fully self-contained proof of this result that further simplifies a recent work by Karthik et al. [SOSA 2024]. In our proof, we introduce a novel graph parameter of independent interest, the linkage capacity γ(H), and show that detecting colorful H-subgraphs in time n^o(γ(H)) refutes ETH. Then, we use a simple construction of communication networks credited to Beneš to obtain k-vertex graphs of maximum degree 3 and linkage capacity Ω(k/log k), avoiding arguments involving expander graphs, which were required in previous papers. We also show that every graph H of treewidth t has linkage capacity Ω(t/log t), thus recovering a stronger result shown by Marx [ToC '10] with a simplified proof.
Additionally, we obtain new tight lower bounds on the complexity of subgraph detection for certain types of patterns by analyzing their linkage capacity: We prove that almost all k-vertex graphs of polynomial average degree Ω(k^β) for β > 0 have linkage capacity Θ(k), which implies tight lower bounds for finding such patterns H. As an application of these results, we also obtain tight lower bounds for counting small induced subgraphs having a fixed property Φ, improving bounds from, e.g., [Roth et al., FOCS 2020].

Subject Classification

ACM Subject Classification
  • Theory of computation → Parameterized complexity and exact algorithms
  • Theory of computation → Problems, reductions and completeness
  • Mathematics of computing → Graph theory
Keywords
  • subgraph isomorphism
  • constraint satisfaction problems
  • linkage capacity
  • exponential-time hypothesis
  • parameterized complexity
  • counting complexity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Akanksha Agrawal, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. Simultaneous feedback edge set: A parameterized perspective. Algorithmica, 83(2):753-774, 2021. URL: https://doi.org/10.1007/S00453-020-00773-9.
  2. Noga Alon. Explicit expanders of every degree and size. Comb., 41(4):447-463, 2021. URL: https://doi.org/10.1007/S00493-020-4429-X.
  3. Noga Alon, Michael R. Capalbo, Yoshiharu Kohayakawa, Vojtech Rödl, Andrzej Rucinski, and Endre Szemerédi. Universality and tolerance. In 41st Annual Symposium on Foundations of Computer Science, FOCS 2000, 12-14 November 2000, Redondo Beach, California, USA, pages 14-21. IEEE Computer Society, 2000. URL: https://doi.org/10.1109/SFCS.2000.892007.
  4. Noga Alon and Dániel Marx. Sparse balanced partitions and the complexity of subgraph problems. SIAM J. Discret. Math., 25(2):631-644, 2011. URL: https://doi.org/10.1137/100812653.
  5. Saeed A. Amiri, Stephan Kreutzer, Dániel Marx, and Roman Rabinovich. Routing with congestion in acyclic digraphs. Inf. Process. Lett., 151, 2019. URL: https://doi.org/10.1016/J.IPL.2019.105836.
  6. Václav E. Beneš. Permutation groups, complexes, and rearrangeable connecting networks. Bell System Tech. J., 43(4):1619-1640, 1964. URL: https://doi.org/10.1002/j.1538-7305.1964.tb04102.x.
  7. Béla Bollobás. The diameter of random graphs. Trans. Amer. Math. Soc., 267(1):41-52, 1981. URL: https://doi.org/10.2307/1998567.
  8. Édouard Bonnet, Sergio Cabello, Bojan Mohar, and Hebert Pérez-Rosés. The inverse voronoi problem in graphs I: hardness. Algorithmica, 82(10):3018-3040, 2020. URL: https://doi.org/10.1007/S00453-020-00716-4.
  9. Edouard Bonnet, Panos Giannopoulos, and Michael Lampis. On the parameterized complexity of red-blue points separation. J. Comput. Geom., 10(1):181-206, 2019. URL: https://doi.org/10.20382/JOCG.V10I1A7.
  10. Édouard Bonnet, Yoichi Iwata, Bart M. P. Jansen, and Lukasz Kowalik. Fine-grained complexity of k-OPT in bounded-degree graphs for solving TSP. In Michael A. Bender, Ola Svensson, and Grzegorz Herman, editors, 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany, volume 144 of LIPIcs, pages 23:1-23:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPICS.ESA.2019.23.
  11. Édouard Bonnet and Tillmann Miltzow. Parameterized hardness of art gallery problems. ACM Trans. Algorithms, 16(4):42:1-42:23, 2020. URL: https://doi.org/10.1145/3398684.
  12. Édouard Bonnet and Florian Sikora. The graph motif problem parameterized by the structure of the input graph. Discret. Appl. Math., 231:78-94, 2017. URL: https://doi.org/10.1016/J.DAM.2016.11.016.
  13. Karl Bringmann. Fine-grained complexity theory (tutorial). In Rolf Niedermeier and Christophe Paul, editors, 36th International Symposium on Theoretical Aspects of Computer Science, STACS 2019, March 13-16, 2019, Berlin, Germany, volume 126 of LIPIcs, pages 4:1-4:7. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPICS.STACS.2019.4.
  14. Karl Bringmann, László Kozma, Shay Moran, and N. S. Narayanaswamy. Hitting set for hypergraphs of low VC-dimension. In Piotr Sankowski and Christos D. Zaroliagis, editors, 24th Annual European Symposium on Algorithms, ESA 2016, August 22-24, 2016, Aarhus, Denmark, volume 57 of LIPIcs, pages 23:1-23:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPICS.ESA.2016.23.
  15. Andrei Z. Broder, Alan M. Frieze, Stephen Suen, and Eli Upfal. An efficient algorithm for the vertex-disjoint paths problem in random graphs. In Éva Tardos, editor, Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, 28-30 January 1996, Atlanta, Georgia, USA, pages 261-268. ACM/SIAM, 1996. URL: http://dl.acm.org/citation.cfm?id=313852.314072.
  16. Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David W. Juedes, Iyad A. Kanj, and Ge Xia. Tight lower bounds for certain parameterized NP-hard problems. Inf. Comput., 201(2):216-231, 2005. URL: https://doi.org/10.1016/J.IC.2005.05.001.
  17. Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower bounds via parameterized complexity. J. Comput. Syst. Sci., 72(8):1346-1367, 2006. URL: https://doi.org/10.1016/J.JCSS.2006.04.007.
  18. Rajesh Chitnis, Andreas E. Feldmann, and Pasin Manurangsi. Parameterized approximation algorithms for bidirected Steiner network problems. ACM Trans. Algorithms, 17(2):12:1-12:68, 2021. URL: https://doi.org/10.1145/3447584.
  19. Rajesh Hemant Chitnis, Andreas E. Feldmann, Mohammad T. Hajiaghayi, and Dániel Marx. Tight bounds for planar strongly connected Steiner subgraph with fixed number of terminals (and extensions). SIAM J. Comput., 49(2):318-364, 2020. URL: https://doi.org/10.1137/18M122371X.
  20. Vincent Cohen-Addad, Éric C. de Verdière, Dániel Marx, and Arnaud de Mesmay. Almost tight lower bounds for hard cutting problems in embedded graphs. J. ACM, 68(4):30:1-30:26, 2021. URL: https://doi.org/10.1145/3450704.
  21. Jason Crampton, Robert Crowston, Gregory Z. Gutin, Mark Jones, and Maadapuzhi S. Ramanujan. Fixed-parameter tractability of workflow satisfiability in the presence of seniority constraints. In Michael R. Fellows, Xuehou Tan, and Binhai Zhu, editors, Frontiers in Algorithmics and Algorithmic Aspects in Information and Management, Third Joint International Conference, FAW-AAIM 2013, Dalian, China, June 26-28, 2013. Proceedings, volume 7924 of Lecture Notes in Computer Science, pages 198-209. Springer, 2013. URL: https://doi.org/10.1007/978-3-642-38756-2_21.
  22. Radu Curticapean, Holger Dell, and Thore Husfeldt. Modular counting of subgraphs: Matchings, matching-splittable graphs, and paths. In Petra Mutzel, Rasmus Pagh, and Grzegorz Herman, editors, 29th Annual European Symposium on Algorithms, ESA 2021, September 6-8, 2021, Lisbon, Portugal (Virtual Conference), volume 204 of LIPIcs, pages 34:1-34:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPICS.ESA.2021.34.
  23. Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis for counting small subgraphs. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 210-223. ACM, 2017. URL: https://doi.org/10.1145/3055399.3055502.
  24. Radu Curticapean and Daniel Neuen. Counting small induced subgraphs: Hardness via Fourier analysis. In Yossi Azar and Debmalya Panigrahi, editors, Proceedings of the 2025 ACM-SIAM Symposium on Discrete Algorithms, SODA 2025, New Orleans, LA, USA, January 12-15, 2025, pages 3677-3695. SIAM, 2025. URL: https://doi.org/10.1137/1.9781611978322.122.
  25. Radu Curticapean and Mingji Xia. Parameterizing the permanent: Genus, apices, minors, evaluation mod 2k. In Venkatesan Guruswami, editor, IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 994-1009. IEEE Computer Society, 2015. URL: https://doi.org/10.1109/FOCS.2015.65.
  26. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  27. Mina Dalirrooyfard and Virginia Vassilevska Williams. Induced cycles and paths are harder than you think. In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pages 531-542. IEEE, 2022. URL: https://doi.org/10.1109/FOCS54457.2022.00057.
  28. Argyrios Deligkas, Eduard Eiben, and Tiger-Lily Goldsmith. Parameterized complexity of hotelling-downs with party nominees. In Luc De Raedt, editor, Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, pages 244-250. ijcai.org, 2022. URL: https://doi.org/10.24963/IJCAI.2022/35.
  29. Holger Dell, Thore Husfeldt, Dániel Marx, Nina Taslaman, and Martin Wahlen. Exponential time complexity of the permanent and the tutte polynomial. ACM Trans. Algorithms, 10(4):21:1-21:32, 2014. URL: https://doi.org/10.1145/2635812.
  30. Reinhard Diestel. Graph Theory. Springer Berlin, 5 edition, 2017. URL: https://doi.org/10.1007/978-3-662-53622-3.
  31. Julian Dörfler, Marc Roth, Johannes Schmitt, and Philip Wellnitz. Counting induced subgraphs: An algebraic approach to #W[1]-hardness. Algorithmica, 84(2):379-404, 2022. URL: https://doi.org/10.1007/S00453-021-00894-9.
  32. Simon Döring, Dániel Marx, and Philip Wellnitz. Counting small induced subgraphs with edge-monotone properties. In Bojan Mohar, Igor Shinkar, and Ryan O'Donnell, editors, Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024, Vancouver, BC, Canada, June 24-28, 2024, pages 1517-1525. ACM, 2024. URL: https://doi.org/10.1145/3618260.3649644.
  33. Simon Döring, Dániel Marx, and Philip Wellnitz. From graph properties to graph parameters: Tight bounds for counting on small subgraphs. In Yossi Azar and Debmalya Panigrahi, editors, Proceedings of the 2025 ACM-SIAM Symposium on Discrete Algorithms, SODA 2025, New Orleans, LA, USA, January 12-15, 2025, pages 3637-3676. SIAM, 2025. URL: https://doi.org/10.1137/1.9781611978322.121.
  34. Eduard Eiben, Gregory Z. Gutin, Philip R. Neary, Clément Rambaud, Magnus Wahlström, and Anders Yeo. Preference swaps for the stable matching problem. Theor. Comput. Sci., 940(Part):222-230, 2023. URL: https://doi.org/10.1016/J.TCS.2022.11.003.
  35. Eduard Eiben, Dusan Knop, Fahad Panolan, and Ondrej Suchý. Complexity of the Steiner network problem with respect to the number of terminals. In Rolf Niedermeier and Christophe Paul, editors, 36th International Symposium on Theoretical Aspects of Computer Science, STACS 2019, March 13-16, 2019, Berlin, Germany, volume 126 of LIPIcs, pages 25:1-25:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPICS.STACS.2019.25.
  36. David Eppstein and Daniel Lokshtanov. The parameterized complexity of finding point sets with hereditary properties. In Christophe Paul and Michal Pilipczuk, editors, 13th International Symposium on Parameterized and Exact Computation, IPEC 2018, August 20-24, 2018, Helsinki, Finland, volume 115 of LIPIcs, pages 11:1-11:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPICS.IPEC.2018.11.
  37. Uriel Feige, MohammadTaghi Hajiaghayi, and James R. Lee. Improved approximation algorithms for minimum weight vertex separators. SIAM J. Comput., 38(2):629-657, 2008. URL: https://doi.org/10.1137/05064299X.
  38. Jacob Focke and Marc Roth. Counting small induced subgraphs with hereditary properties. SIAM J. Comput., 53(2):189-220, 2024. URL: https://doi.org/10.1137/22M1512211.
  39. Fedor V. Fomin, Fahad Panolan, Maadapuzhi S. Ramanujan, and Saket Saurabh. On the optimality of pseudo-polynomial algorithms for integer programming. Math. Program., 198(1):561-593, 2023. URL: https://doi.org/10.1007/S10107-022-01783-X.
  40. Robert Ganian. Using neighborhood diversity to solve hard problems. CoRR, abs/1201.3091, 2012. URL: https://arxiv.org/abs/1201.3091.
  41. Mika Göös, Rahul Jain, and Thomas Watson. Extension complexity of independent set polytopes. SIAM J. Comput., 47(1):241-269, 2018. URL: https://doi.org/10.1137/16M109884X.
  42. Jiong Guo, Sepp Hartung, Rolf Niedermeier, and Ondrej Suchý. The parameterized complexity of local search for TSP, more refined. Algorithmica, 67(1):89-110, 2013. URL: https://doi.org/10.1007/S00453-012-9685-8.
  43. Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput. Syst. Sci., 62(2):367-375, 2001. URL: https://doi.org/10.1006/JCSS.2000.1727.
  44. Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponential complexity? J. Comput. Syst. Sci., 63(4):512-530, 2001. URL: https://doi.org/10.1006/JCSS.2001.1774.
  45. Klaus Jansen, Stefan Kratsch, Dániel Marx, and Ildikó Schlotter. Bin packing with fixed number of bins revisited. J. Comput. Syst. Sci., 79(1):39-49, 2013. URL: https://doi.org/10.1016/J.JCSS.2012.04.004.
  46. Mark Jerrum and Kitty Meeks. The parameterised complexity of counting connected subgraphs and graph motifs. J. Comput. Syst. Sci., 81(4):702-716, 2015. URL: https://doi.org/10.1016/J.JCSS.2014.11.015.
  47. Mark Jerrum and Kitty Meeks. Some hard families of parameterized counting problems. ACM Trans. Comput. Theory, 7(3):11:1-11:18, 2015. URL: https://doi.org/10.1145/2786017.
  48. Mark Jerrum and Kitty Meeks. The parameterised complexity of counting even and odd induced subgraphs. Comb., 37(5):965-990, 2017. URL: https://doi.org/10.1007/S00493-016-3338-5.
  49. Mark Jones, Daniel Lokshtanov, Maadapuzhi S. Ramanujan, Saket Saurabh, and Ondrej Suchý. Parameterized complexity of directed Steiner tree on sparse graphs. SIAM J. Discret. Math., 31(2):1294-1327, 2017. URL: https://doi.org/10.1137/15M103618X.
  50. Karthik C. Srikanta, Dániel Marx, Marcin Pilipczuk, and Uéverton S. Souza. Conditional lower bounds for sparse parameterized 2-CSP: A streamlined proof. In Merav Parter and Seth Pettie, editors, 2024 Symposium on Simplicity in Algorithms, SOSA 2024, Alexandria, VA, USA, January 8-10, 2024, pages 383-395. SIAM, 2024. URL: https://doi.org/10.1137/1.9781611977936.35.
  51. Victor Klee and David Larman. Diameters of random graphs. Canadian J. Math., 33(3):618-640, 1981. URL: https://doi.org/10.4153/CJM-1981-050-1.
  52. Dusan Knop, Simon Schierreich, and Ondrej Suchý. Balancing the spread of two opinions in sparse social networks (student abstract). In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022, pages 12987-12988. AAAI Press, 2022. URL: https://doi.org/10.1609/AAAI.V36I11.21630.
  53. Alexandr V. Kostochka. Lower bound of the hadwiger number of graphs by their average degree. Comb., 4(4):307-316, 1984. URL: https://doi.org/10.1007/BF02579141.
  54. Eric Lehman, F. Thomson Leighton, and Albert R. Meyer. Beneš Network, june 30 2021. [Online; accessed 2024-09-26]. URL: https://eng.libretexts.org/@go/page/48364.
  55. Frank T. Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. J. ACM, 46(6):787-832, 1999. URL: https://doi.org/10.1145/331524.331526.
  56. Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the exponential time hypothesis. Bull. EATCS, 105:41-72, 2011. URL: http://eatcs.org/beatcs/index.php/beatcs/article/view/92.
  57. Daniel Lokshtanov, Maadapuzhi S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Parameterized complexity and approximability of directed odd cycle transversal. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 2181-2200. SIAM, 2020. URL: https://doi.org/10.1137/1.9781611975994.134.
  58. Wolfgang Mader. Existenz n-fach zusammenhängender Teilgraphen in Graphen genügend großer Kantendichte. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 37:86-97, 1972. URL: https://doi.org/10.1007/BF02993903.
  59. Dániel Marx. Can you beat treewidth? Theory Comput., 6(1):85-112, 2010. URL: https://doi.org/10.4086/toc.2010.v006a005.
  60. Jesper Nederlof and Céline M. F. Swennenhuis. On the fine-grained parameterized complexity of partial scheduling to minimize the makespan. Algorithmica, 84(8):2309-2334, 2022. URL: https://doi.org/10.1007/S00453-022-00970-8.
  61. Jakob Nordström. New wine into old wineskins: A survey of some pebbling classics with supplemental results. Technical report, KTH Royal Institute of Technology, 2015. Google Scholar
  62. Marcin Pilipczuk and Magnus Wahlström. Directed multicut is W[1]-hard, even for four terminal pairs. ACM Trans. Comput. Theory, 10(3):13:1-13:18, 2018. URL: https://doi.org/10.1145/3201775.
  63. Marc Roth and Johannes Schmitt. Counting induced subgraphs: A topological approach to #W[1]-hardness. Algorithmica, 82(8):2267-2291, 2020. URL: https://doi.org/10.1007/S00453-020-00676-9.
  64. Marc Roth, Johannes Schmitt, and Philip Wellnitz. Counting small induced subgraphs satisfying monotone properties. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 1356-1367. IEEE, 2020. URL: https://doi.org/10.1109/FOCS46700.2020.00128.
  65. Claude E. Shannon. A theorem on coloring the lines of a network. J. Math. Physics, 28(1-4):148-152, 1949. URL: https://doi.org/10.1002/sapm1949281148.
  66. Robin Thomas and Paul Wollan. An improved linear edge bound for graph linkages. Eur. J. Comb., 26(3-4):309-324, 2005. URL: https://doi.org/10.1016/J.EJC.2004.02.013.
  67. Virginia V. Williams. Hardness of easy problems: Basing hardness on popular conjectures such as the strong exponential time hypothesis (invited talk). In Thore Husfeldt and Iyad A. Kanj, editors, 10th International Symposium on Parameterized and Exact Computation, IPEC 2015, September 16-18, 2015, Patras, Greece, volume 43 of LIPIcs, pages 17-29. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. URL: https://doi.org/10.4230/LIPICS.IPEC.2015.17.
  68. Virginia V. Williams. On some fine-grained questions in algorithms and complexity. In Proceedings of the International Congress of Mathematicians - Rio de Janeiro 2018. Vol. IV. Invited lectures, pages 3447-3487. World Sci. Publ., Hackensack, NJ, 2018. URL: https://doi.org/10.1142/9789813272880_0188.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail