Being Efficient in Time, Space, and Workload: a Self-Stabilizing Unison and Its Consequences

Authors Stéphane Devismes , David Ilcinkas , Colette Johnen , Frédéric Mazoit



PDF
Thumbnail PDF

File

LIPIcs.STACS.2025.30.pdf
  • Filesize: 0.75 MB
  • 18 pages

Document Identifiers

Author Details

Stéphane Devismes
  • Laboratoire MIS, Université de Picardie, 33 rue Saint Leu - 80039 Amiens cedex 1, France
David Ilcinkas
  • Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France
Colette Johnen
  • Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France
Frédéric Mazoit
  • Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France

Cite As Get BibTex

Stéphane Devismes, David Ilcinkas, Colette Johnen, and Frédéric Mazoit. Being Efficient in Time, Space, and Workload: a Self-Stabilizing Unison and Its Consequences. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 30:1-30:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.STACS.2025.30

Abstract

We present a self-stabilizing algorithm for the unison problem which is efficient in time, workload, and space in a weak model. Precisely, our algorithm is defined in the atomic-state model and works in anonymous asynchronous connected networks in which even local ports are unlabeled. It makes no assumption on the daemon and thus stabilizes under the weakest one: the distributed unfair daemon.
In an n-node network of diameter D and assuming the knowledge B ≥ 2D+2, our algorithm only requires Θ(log(B)) bits per node and is fully polynomial as it stabilizes in at most 2D+2 rounds and O(min(n²B, n³)) moves. In particular, it is the first self-stabilizing unison for arbitrary asynchronous anonymous networks achieving an asymptotically optimal stabilization time in rounds using a bounded memory at each node.
Furthermore, we show that our solution can be used to efficiently simulate synchronous self-stabilizing algorithms in asynchronous environments. For example, this simulation allows us to design a new state-of-the-art algorithm solving both the leader election and the BFS (Breadth-First Search) spanning tree construction in any identified connected network which, to the best of our knowledge, beats all existing solutions in the literature.

Subject Classification

ACM Subject Classification
  • Theory of computation → Distributed computing models
  • Theory of computation → Distributed algorithms
  • Theory of computation → Design and analysis of algorithms
Keywords
  • Self-stabilization
  • unison
  • time complexity
  • synchronizer

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. S. Aggarwal and S. Kutten. Time optimal self-stabilizing spanning tree algorithms. In 13th Foundations of Software Technology and Theoretical Computer Science, (TSTTCS'93), volume 761, pages 400-410, 1993. URL: https://doi.org/10.1007/3-540-57529-4_72.
  2. K. Altisen, A. Cournier, S. Devismes, A. Durand, and F. Petit. Self-stabilizing leader election in polynomial steps. Information and Computation, 254(3):330-366, 2017. URL: https://doi.org/10.1016/j.ic.2016.09.002.
  3. K. Altisen, S. Devismes, S. Dubois, and F. Petit. Introduction to Distributed Self-Stabilizing Algorithms. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool, 2019. URL: https://doi.org/10.2200/S00908ED1V01Y201903DCT015.
  4. B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, and G. Varghese. Time optimal self-stabilizing synchronization. In 25th Annual Symposium on Theory of Computing, (STOC'93), pages 652-661, 1993. URL: https://doi.org/10.1145/167088.167256.
  5. B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by local checking and correction. In 32nd Annual Symposium of Foundations of Computer, Science (FOCS'91), pages 268-277, 1991. URL: https://doi.org/10.1109/SFCS.1991.185378.
  6. B. Awerbuch and G. Varghese. Distributed program checking: a paradigm for building self-stabilizing distributed protocols. In 32nd Annual Symposium on Foundations of Computer Science, (FOCS'91), pages 258-267, 1991. URL: https://doi.org/10.1109/SFCS.1991.185377.
  7. Baruch Awerbuch. Complexity of network synchronization. J. ACM, 32(4):804-823, 1985. URL: https://doi.org/10.1145/4221.4227.
  8. J. Beauquier, M. Gradinariu, and C. Johnen. Cross-over composition - enforcement of fairness under unfair adversary. In 5th International Workshop on Self-Stabilizing Systems, (WSS'01), pages 19-34, 2001. URL: https://doi.org/10.1007/3-540-45438-1_2.
  9. L. Blin, C. Johnen, G. Le Bouder, and F. Petit. Silent anonymous snap-stabilizing termination detection. In 41st International Symposium on Reliable Distributed Systems, (SRDS'22), pages 156-165, 2022. URL: https://doi.org/10.1109/SRDS55811.2022.00023.
  10. C. Boulinier and F. Petit. Self-stabilizing wavelets and rho-hops coordination. In 22nd IEEE International Symposium on Parallel and Distributed Processing, (IPDPS'08), pages 1-8, 2008. URL: https://doi.org/10.1109/IPDPS.2008.4536130.
  11. C. Boulinier, F. Petit, and V. Villain. When graph theory helps self-stabilization. In 23rd Annual Symposium on Principles of Distributed Computing, (PODC'04), pages 150-159, 2004. URL: https://doi.org/10.1145/1011767.1011790.
  12. J. Burman and S. Kutten. Time optimal asynchronous self-stabilizing spanning tree. In 21st International Symposium on Distributed Computing, (DISC'07), volume 4731, pages 92-107, 2007. URL: https://doi.org/10.1007/978-3-540-75142-7_10.
  13. A. Cournier, A. K. Datta, F. Petit, and V. Villain. Snap-stabilizing PIF algorithm in arbitrary networks. In 22nd International Conference on Distributed Computing Systems (ICDCS'02), pages 199-206, 2002. URL: https://doi.org/10.1109/ICDCS.2002.1022257.
  14. A. Cournier, S. Rovedakis, and V. Villain. The first fully polynomial stabilizing algorithm for BFS tree construction. Information and Computation, 265:26-56, 2019. URL: https://doi.org/10.1016/j.ic.2019.01.005.
  15. J.-M. Couvreur, N. Francez, and M. G. Gouda. Asynchronous unison (extended abstract). In 12th International Conference on Distributed Computing Systems, (ICDCS'92), pages 486-493, 1992. URL: https://doi.org/10.1109/ICDCS.1992.235005.
  16. A. K. Datta, S. Devismes, K. Heurtefeux, L. L. Larmore, and Y. Rivierre. Competitive self-stabilizing k-clustering. Theoretical Computer Science, 626:110-133, 2016. URL: https://doi.org/10.1016/j.tcs.2016.02.010.
  17. A. K. Datta, S. Devismes, and L. L. Larmore. A silent self-stabilizing algorithm for the generalized minimal k-dominating set problem. Theoretical Computer Science, 753:35-63, 2019. URL: https://doi.org/10.1016/j.tcs.2018.06.040.
  18. A. K. Datta and L. L. Larmore. Leader election and centers and medians in tree networks. In 15th International Symposium on Stabilization, Safety, and Security of Distributed Systems, (SSS'13), pages 113-132, 2013. URL: https://doi.org/10.1007/978-3-319-03089-0_9.
  19. S. Devismes, D. Ilcinkas, and C. Johnen. Optimized silent self-stabilizing scheme for tree-based constructions. Algorithmica, 84(1):85-123, 2022. URL: https://doi.org/10.1007/s00453-021-00878-9.
  20. S. Devismes, D. Ilcinkas, C. Johnen, and F. Mazoit. Making local algorithms efficiently self-stabilizing in arbitrary asynchronous environments. CoRR, abs/2307.06635, 2023. URL: https://doi.org/10.48550/arXiv.2307.06635.
  21. S. Devismes, D Ilcinkas, C. Johnen, and F. Mazoit. Asynchronous self-stabilization made fast, simple, and energy-efficient. In 43rd Symposium on Principles of Distributed Computing, (PODC'24), pages 538-548, 2024. URL: https://doi.org/10.1145/3662158.3662803.
  22. S. Devismes and C. Johnen. Silent self-stabilizing BFS tree algorithms revisited. Journal on Parallel Distributed Computing, 97:11-23, 2016. URL: https://doi.org/10.1016/j.jpdc.2016.06.003.
  23. S. Devismes and C. Johnen. Self-stabilizing distributed cooperative reset. In 39th International Conference on Distributed Computing Systems, (ICDCS'19), pages 379-389, 2019. URL: https://doi.org/10.1109/ICDCS.2019.00045.
  24. S. Devismes and F. Petit. On efficiency of unison. In 4th Workshop on Theoretical Aspects of Dynamic Distributed Systems, (TADDS'12), pages 20-25, 2012. URL: https://doi.org/10.1145/2414815.2414820.
  25. E. W. Dijkstra. Self-stabilization in spite of distributed control. Communications of the ACM, 17(11):643-644, 1974. URL: https://doi.org/10.1145/361179.361202.
  26. S. Dolev. Self-Stabilization. MIT Press, 2000. Google Scholar
  27. S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems assuming only read/write atomicity. Distributed Computing, 7(1):3-16, 1993. URL: https://doi.org/10.1007/BF02278851.
  28. Y. Emek and E. Keren. A thin self-stabilizing asynchronous unison algorithm with applications to fault tolerant biological networks. In 40nd Symposium on Principles of Distributed Computing, (PODC'21), pages 93-102, 2021. URL: https://doi.org/10.1145/3465084.3467922.
  29. Y. Emek and R. Wattenhofer. Stone age distributed computing. In 32nd Symposium on Principles of Distributed Computing, (PODC'13), pages 137-146, 2013. URL: https://doi.org/10.1145/2484239.2484244.
  30. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one faulty process. Journal of the ACM, 32(2):374-382, 1985. URL: https://doi.org/10.1145/3149.214121.
  31. C. Glacet, N. Hanusse, D. Ilcinkas, and C. Johnen. Disconnected components detection and rooted shortest-path tree maintenance in networks. Journal of Parallel and Distributed Computing, 132:299-309, 2019. URL: https://doi.org/10.1016/j.jpdc.2019.05.006.
  32. Maria Gradinariu and Sébastien Tixeuil. Conflict managers for self-stabilization without fairness assumption. In 27th IEEE International Conference on Distributed Computing Systems (ICDCS 2007), June 25-29, 2007, Toronto, Ontario, Canada, page 46. IEEE Computer Society, 2007. URL: https://doi.org/10.1109/ICDCS.2007.95.
  33. A. Kravchik and S. Kutten. Time optimal synchronous self stabilizing spanning tree. In 27th International Symposium on Distributed Computing, (DISC'13), pages 91-105, 2013. URL: https://doi.org/10.1007/978-3-642-41527-2_7.
  34. S. Tixeuil. Vers l'auto-stabilisation des systèmes à grande échelle. Habilitation à diriger des recherches, Université Paris Sud - Paris XI, 2006. URL: https://tel.archives-ouvertes.fr/tel-00124848/file/hdr_final.pdf.
  35. V. Turau. Efficient transformation of distance-2 self-stabilizing algorithms. Journal of Parallel and Distributed Computing, 72(4):603-612, 2012. URL: https://doi.org/10.1016/j.jpdc.2011.12.008.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail