Efficient Approximation Schemes for Scheduling on a Stochastic Number of Machines

Authors Leah Epstein , Asaf Levin



PDF
Thumbnail PDF

File

LIPIcs.STACS.2025.31.pdf
  • Filesize: 0.74 MB
  • 18 pages

Document Identifiers

Author Details

Leah Epstein
  • Department of Mathematics, University of Haifa, Israel
Asaf Levin
  • Faculty of Data and Decisions Science, The Technion, Haifa, Israel

Cite As Get BibTex

Leah Epstein and Asaf Levin. Efficient Approximation Schemes for Scheduling on a Stochastic Number of Machines. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 31:1-31:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.STACS.2025.31

Abstract

We study three two-stage optimization problems with a similar structure and different objectives. In the first stage of each problem, the goal is to assign input jobs of positive sizes to unsplittable bags. After this assignment is decided, the realization of the number of identical machines that will be available is revealed. Then, in the second stage, the bags are assigned to machines. The probability vector of the number of machines in the second stage is known to the algorithm as part of the input before making the decisions of the first stage. Thus, the vector of machine completion times is a random variable. The goal of the first problem is to minimize the expected value of the makespan of the second stage schedule, while the goal of the second problem is to maximize the expected value of the minimum completion time of the machines in the second stage solution. The goal of the third problem is to minimize the 𝓁_𝔭 norm for a fixed 𝔭 > 1, where the norm is applied on machines' completion times vectors. Each one of the first two problems admits a PTAS as Buchem et al. showed recently. Here we significantly improve all their results by designing an EPTAS for each one of these problems. We also design an EPTAS for 𝓁_𝔭 norm minimization for any 𝔭 > 1.

Subject Classification

ACM Subject Classification
  • Theory of computation → Scheduling algorithms
Keywords
  • Approximation algorithms
  • Approximation schemes
  • Two-stage stochastic optimization problems
  • Multiprocessor scheduling

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid. Approximation schemes for scheduling. In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'97), pages 493-500, 1997. Google Scholar
  2. N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid. Approximation schemes for scheduling on parallel machines. Journal of Scheduling, 1(1):55-66, 1998. Google Scholar
  3. B. Awerbuch, Y. Azar, E. F. Grove, M.-Y. Kao, P. Krishnan, and J. S. Vitter. Load balancing in the l_p norm. In Proc. of the 36th Annual Symposium on Foundations of Computer Science (FOCS'95), pages 383-391, 1995. Google Scholar
  4. Y. Azar, L. Epstein, and R. van Stee. Resource augmentation in load balancing. Journal of Scheduling, 3(5):249-258, 2000. Google Scholar
  5. E. Balkanski, T. Ou, C. Stein, and H.-T. Wei. Scheduling with speed predictions. In Proc. of the 21st International Workshop on Approximation and Online Algorithms (WAOA'23), pages 74-89, 2023. Google Scholar
  6. N. Bansal and K. R. Pruhs. Server scheduling to balance priorities, fairness, and average quality of service. SIAM Journal on Computing, 39(7):3311-3335, 2010. URL: https://doi.org/10.1137/090772228.
  7. N. Bansal and M. Sviridenko. The Santa Claus problem. In Proc. of the 38th Annual ACM Symposium on Theory of Computing (STOC'06), pages 31-40, 2006. Google Scholar
  8. M. Brehob, E. Torng, and P. Uthaisombut. Applying extra-resource analysis to load balancing. Journal of Scheduling, 3(5):273-288, 2000. Google Scholar
  9. M. Buchem, F. Eberle, H. K. Kasuya Rosado, K. Schewior, and A. Wiese. Scheduling on a stochastic number of machines. In Proc. of the 27th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX'24), pages 14:1-14:15, 2024. Google Scholar
  10. A. K. Chandra and C. K. Wong. Worst-case analysis of a placement algorithm related to storage allocation. SIAM Journal on Computing, 4(3):249-263, 1975. URL: https://doi.org/10.1137/0204021.
  11. L. Chen, K. Jansen, and G. Zhang. On the optimality of exact and approximation algorithms for scheduling problems. Journal of Computer and System Sciences, 96:1-32, 2018. URL: https://doi.org/10.1016/J.JCSS.2018.03.005.
  12. R. A. Cody and E. G. Coffman Jr. Record allocation for minimizing expected retrieval costs on drum-like storage devices. Journal of the ACM, 23(1):103-115, 1976. URL: https://doi.org/10.1145/321921.321933.
  13. E. G. Coffman Jr., M. R. Garey, and D. S. Johnson. An application of bin-packing to multiprocessor scheduling. SIAM Journal on Computing, 7(1):1-17, 1978. URL: https://doi.org/10.1137/0207001.
  14. J. Csirik, H. Kellerer, and G. Woeginger. The exact LPT-bound for maximizing the minimum completion time. Operations Research Letters, 11(5):281-287, 1992. URL: https://doi.org/10.1016/0167-6377(92)90004-M.
  15. B. L. Deuermeyer, D. K. Friesen, and M. A. Langston. Scheduling to maximize the minimum processor finish time in a multiprocessor system. SIAM Journal on Discrete Mathematics, 3(2):190-196, 1982. Google Scholar
  16. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag, Berlin, 1999. Google Scholar
  17. S. Dye, L. Stougie, and A. Tomasgard. The stochastic single resource service-provision problem. Naval Research Logistics, 50(8):869-887, 2003. Google Scholar
  18. F. Eberle, R. Hoeksma, N. Megow, L. Nölke, K. Schewior, and B. Simon. Speed-robust scheduling: sand, bricks, and rocks. Mathematical Programming, 197(2):1009-1048, 2023. URL: https://doi.org/10.1007/S10107-022-01829-0.
  19. W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved within 1+ε in linear time. Combinatorica, 1(4):349-355, 1981. Google Scholar
  20. D. K. Friesen. Tighter bounds for the multifit processor scheduling algorithm. SIAM Journal on Computing, 13(1):170-181, 1984. URL: https://doi.org/10.1137/0213013.
  21. D. K. Friesen and B. L. Deuermeyer. Analysis of greedy solutions for a replacement part sequencing problem. Mathematics of Operations Research, 6(1):74-87, 1981. URL: https://doi.org/10.1287/MOOR.6.1.74.
  22. R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical Journal, 45(9):1563-1581, 1966. Google Scholar
  23. R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal of Applied Mathematics, 17(2):416-429, 1969. Google Scholar
  24. D. S. Hochbaum. Various notions of approximations: Good, better, best and more. In D. S. Hochbaum, editor, Approximation algorithms. PWS Publishing Company, 1997. Google Scholar
  25. D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for scheduling problems: theoretical and practical results. Journal of the ACM, 34(1):144-162, 1987. URL: https://doi.org/10.1145/7531.7535.
  26. K. Jansen, K.-M. Klein, and J. Verschae. Closing the gap for makespan scheduling via sparsification techniques. Mathematics of Operations Research, 45(4):1371-1392, 2020. URL: https://doi.org/10.1287/MOOR.2019.1036.
  27. R. Kannan. Improved algorithms for integer programming and related lattice problems. In Proc. of the 15th annual ACM Symposium on Theory of Computing (STOC'83), pages 193-206, 1983. Google Scholar
  28. H. W. Lenstra Jr. Integer programming with a fixed number of variables. Mathematics of Operations Research, 8(4):538-548, 1983. URL: https://doi.org/10.1287/MOOR.8.4.538.
  29. J. Y.-T. Leung and W.-D. Wei. Tighter bounds on a heuristic for a partition problem. Information Processing Letters, 56(1):51-57, 1995. URL: https://doi.org/10.1016/0020-0190(95)00099-X.
  30. J. Minařík and J. Sgall. Speed-robust scheduling revisited. In Proc. of the 27th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX'24), pages 8:1-8:20, 2024. URL: https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.8.
  31. M. Mitzenmacher and S. Vassilvitskii. Algorithms with predictions. Communications of the ACM, 65(7):33-35, 2022. URL: https://doi.org/10.1145/3528087.
  32. K. Rustogi and V. A. Strusevich. Parallel machine scheduling: Impact of adding extra machines. Operations Research, 61(5):1243-1257, 2013. URL: https://doi.org/10.1287/OPRE.2013.1208.
  33. C. Stein and M. Zhong. Scheduling when you do not know the number of machines. ACM Transactions on Algorithms, 16(1):9:1-9:20, 2020. URL: https://doi.org/10.1145/3340320.
  34. G. J. Woeginger. A polynomial time approximation scheme for maximizing the minimum machine completion time. Operations Research Letters, 20(4):149-154, 1997. URL: https://doi.org/10.1016/S0167-6377(96)00055-7.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail