Residue Domination in Bounded-Treewidth Graphs

Authors Jakob Greilhuber , Philipp Schepper , Philip Wellnitz



PDF
Thumbnail PDF

File

LIPIcs.STACS.2025.41.pdf
  • Filesize: 0.95 MB
  • 20 pages

Document Identifiers

Author Details

Jakob Greilhuber
  • TU Wien, Austria
  • CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
Philipp Schepper
  • CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
Philip Wellnitz
  • National Institute of Informatics, Tokyo, Japan
  • The Graduate University for Advanced Studies, SOKENDAI, Tokyo, Japan

Acknowledgements

The work of Jakob Greilhuber has been carried out mostly during a summer internship at the Max Planck Institute for Informatics, Saarbrücken, Germany. The work of Philip Wellnitz was partially carried out at the Max Planck Institute for Informatics.

Cite As Get BibTex

Jakob Greilhuber, Philipp Schepper, and Philip Wellnitz. Residue Domination in Bounded-Treewidth Graphs. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 41:1-41:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.STACS.2025.41

Abstract

For the vertex selection problem (σ,ρ)-DomSet one is given two fixed sets σ and ρ of integers and the task is to decide whether we can select vertices of the input graph such that, for every selected vertex, the number of selected neighbors is in σ and, for every unselected vertex, the number of selected neighbors is in ρ [Telle, Nord. J. Comp. 1994]. This framework covers many fundamental graph problems such as Independent Set and Dominating Set.
We significantly extend the recent result by Focke et al. [SODA 2023] to investigate the case when σ and ρ are two (potentially different) residue classes modulo m ≥ 2. We study the problem parameterized by treewidth and present an algorithm that solves in time m^tw ⋅ n^O(1) the decision, minimization and maximization version of the problem. This significantly improves upon the known algorithms where for the case m ≥ 3 not even an explicit running time is known. We complement our algorithm by providing matching lower bounds which state that there is no (m-ε)^pw ⋅ n^O(1)-time algorithm parameterized by pathwidth pw, unless SETH fails. For m = 2, we extend these bounds to the minimization version as the decision version is efficiently solvable.

Subject Classification

ACM Subject Classification
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • Parameterized Complexity
  • Treewidth
  • Generalized Dominating Set
  • Strong Exponential Time Hypothesis

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Jochen Alber, Hans L. Bodlaender, Henning Fernau, Ton Kloks, and Rolf Niedermeier. Fixed parameter algorithms for dominating set and related problems on planar graphs. Algorithmica, 33(4):461-493, 2002. URL: https://doi.org/10.1007/S00453-001-0116-5.
  2. Marlow Anderson and Todd Feil. Turning lights out with linear algebra. Mathematics Magazine, 71(4):300-303, 1998. URL: https://doi.org/10.1080/0025570X.1998.11996658.
  3. Ferhat Ay, Manolis Kellis, and Tamer Kahveci. Submap: Aligning metabolic pathways with subnetwork mappings. J. Comput. Biol., 18(3):219-235, 2011. PMID: 21385030. URL: https://doi.org/10.1089/cmb.2010.0280.
  4. Lukas Barth, Benjamin Niedermann, Martin Nöllenburg, and Darren Strash. Temporal map labeling: a new unified framework with experiments. In Siva Ravada, Mohammed Eunus Ali, Shawn D. Newsam, Matthias Renz, and Goce Trajcevski, editors, Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS 2016, Burlingame, California, USA, October 31 - November 3, 2016, pages 23:1-23:10. ACM, 2016. URL: https://doi.org/10.1145/2996913.2996957.
  5. Abraham Berman, Franziska Borer, and Norbert Hungerbühler. Lights out on graphs. Mathematische Semesterberichte, 68(2):237-255, 2021. URL: https://doi.org/10.1007/s00591-021-00297-5.
  6. Hans L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth. In S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors, Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA, USA, pages 226-234. ACM, 1993. URL: https://doi.org/10.1145/167088.167161.
  7. Glencora Borradaile and Hung Le. Optimal dynamic program for r-domination problems over tree decompositions. In Jiong Guo and Danny Hermelin, editors, 11th International Symposium on Parameterized and Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark, volume 63 of LIPIcs, pages 8:1-8:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPICS.IPEC.2016.8.
  8. Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. Fast dynamic programming for locally checkable vertex subset and vertex partitioning problems. Theor. Comput. Sci., 511:66-76, 2013. URL: https://doi.org/10.1016/J.TCS.2013.01.009.
  9. Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of satisfiability of small depth circuits. In Jianer Chen and Fedor V. Fomin, editors, Parameterized and Exact Computation, 4th International Workshop, IWPEC 2009, Copenhagen, Denmark, September 10-11, 2009, Revised Selected Papers, volume 5917 of Lecture Notes in Computer Science, pages 75-85. Springer, 2009. URL: https://doi.org/10.1007/978-3-642-11269-0_6.
  10. Yair Caro and Michael S. Jacobson. On non-z(mod k) dominating sets. Discuss. Math. Graph Theory, 23(1):189-199, 2003. URL: https://doi.org/10.7151/dmgt.1195.
  11. Yair Caro, William F. Klostermeyer, and John L. Goldwasser. Odd and residue domination numbers of a graph. Discuss. Math. Graph Theory, 21(1):119-136, 2001. URL: https://doi.org/10.7151/dmgt.1137.
  12. David Cattanéo and Simon Perdrix. Parameterized complexity of weak odd domination problems. In Leszek Gasieniec and Frank Wolter, editors, Fundamentals of Computation Theory - 19th International Symposium, FCT 2013, Liverpool, UK, August 19-21, 2013. Proceedings, volume 8070 of Lecture Notes in Computer Science, pages 107-120. Springer, 2013. URL: https://doi.org/10.1007/978-3-642-40164-0_13.
  13. David Cattanéo and Simon Perdrix. The parameterized complexity of domination-type problems and application to linear codes. In T. V. Gopal, Manindra Agrawal, Angsheng Li, and S. Barry Cooper, editors, Theory and Applications of Models of Computation - 11th Annual Conference, TAMC 2014, Chennai, India, April 11-13, 2014. Proceedings, volume 8402 of Lecture Notes in Computer Science, pages 86-103. Springer, 2014. URL: https://doi.org/10.1007/978-3-319-06089-7_7.
  14. Mathieu Chapelle. Parameterized complexity of generalized domination problems on bounded tree-width graphs. CoRR, abs/1004.2642v5, 2010. URL: https://doi.org/10.48550/arxiv.1004.2642.
  15. Mathieu Chapelle. Décompositions de graphes : quelques limites et obstructions. (Graphs decompositions: some limites and obstructions). PhD thesis, University of Orléans, France, 2011. URL: https://tel.archives-ouvertes.fr/tel-00659666.
  16. E. Cockayne and S. Hedetniemi. Optimal domination in graphs. IEEE Transactions on Circuits and Systems, 22(11):855-857, 1975. URL: https://doi.org/10.1109/TCS.1975.1083994.
  17. Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs. Inf. Comput., 85(1):12-75, 1990. URL: https://doi.org/10.1016/0890-5401(90)90043-H.
  18. Radu Curticapean and Dániel Marx. Tight conditional lower bounds for counting perfect matchings on graphs of bounded treewidth, cliquewidth, and genus. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1650-1669. SIAM, 2016. URL: https://doi.org/10.1137/1.9781611974331.CH113.
  19. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  20. Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij, and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth in single exponential time. ACM Trans. Algorithms, 18(2):17:1-17:31, 2022. URL: https://doi.org/10.1145/3506707.
  21. Yevgeniy Dodis and Peter Winkler. Universal configurations in light-flipping games. In S. Rao Kosaraju, editor, Proceedings of the Twelfth Annual Symposium on Discrete Algorithms, January 7-9, 2001, Washington, DC, USA, pages 926-927. ACM/SIAM, 2001. URL: http://dl.acm.org/citation.cfm?id=365411.365812.
  22. Devdatt P. Dubhashi, Alessandro Mei, Alessandro Panconesi, Jaikumar Radhakrishnan, and Aravind Srinivasan. Fast distributed algorithms for (weakly) connected dominating sets and linear-size skeletons. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 12-14, 2003, Baltimore, Maryland, USA, pages 717-724. ACM/SIAM, 2003. URL: http://dl.acm.org/citation.cfm?id=644108.644226.
  23. Rudolf Fleischer and Jiajin Yu. A survey of the game "Lights Out!". In Andrej Brodnik, Alejandro López-Ortiz, Venkatesh Raman, and Alfredo Viola, editors, Space-Efficient Data Structures, Streams, and Algorithms - Papers in Honor of J. Ian Munro on the Occasion of His 66th Birthday, volume 8066 of Lecture Notes in Computer Science, pages 176-198. Springer, 2013. URL: https://doi.org/10.1007/978-3-642-40273-9_13.
  24. Jacob Focke, Dániel Marx, Fionn Mc Inerney, Daniel Neuen, Govind S. Sankar, Philipp Schepper, and Philip Wellnitz. Tight complexity bounds for counting generalized dominating sets in bounded-treewidth graphs Part I: Algorithmic results. CoRR, abs/2211.04278v2, 2023. URL: https://doi.org/10.48550/arXiv.2211.04278.
  25. Jacob Focke, Dániel Marx, Fionn Mc Inerney, Daniel Neuen, Govind S. Sankar, Philipp Schepper, and Philip Wellnitz. Tight complexity bounds for counting generalized dominating sets in bounded-treewidth graphs Part II: Hardness results. CoRR, abs/2306.03640, 2023. URL: https://doi.org/10.48550/arXiv.2306.03640.
  26. Jacob Focke, Dániel Marx, Fionn Mc Inerney, Daniel Neuen, Govind S. Sankar, Philipp Schepper, and Philip Wellnitz. Tight complexity bounds for counting generalized dominating sets in bounded-treewidth graphs. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 3664-3683. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.ch140.
  27. Fedor V. Fomin, Petr A. Golovach, Jan Kratochvíl, Dieter Kratsch, and Mathieu Liedloff. Sort and search: Exact algorithms for generalized domination. Inf. Process. Lett., 109(14):795-798, 2009. URL: https://doi.org/10.1016/J.IPL.2009.03.023.
  28. Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A measure & conquer approach for the analysis of exact algorithms. J. ACM, 56(5):25:1-25:32, 2009. URL: https://doi.org/10.1145/1552285.1552286.
  29. Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation of representative families with applications in parameterized and exact algorithms. J. ACM, 63(4):29:1-29:60, 2016. URL: https://doi.org/10.1145/2886094.
  30. Fedor V. Fomin and Dimitrios M. Thilikos. Dominating sets in planar graphs: Branch-width and exponential speed-up. SIAM J. Comput., 36(2):281-309, 2006. URL: https://doi.org/10.1137/S0097539702419649.
  31. Andrei Gagarin and Padraig Corcoran. Multiple domination models for placement of electric vehicle charging stations in road networks. Comput. Oper. Res., 96:69-79, 2018. URL: https://doi.org/10.1016/j.cor.2018.03.014.
  32. Serge Gaspers, Dieter Kratsch, Mathieu Liedloff, and Ioan Todinca. Exponential time algorithms for the minimum dominating set problem on some graph classes. ACM Trans. Algorithms, 6(1):9:1-9:21, 2009. URL: https://doi.org/10.1145/1644015.1644024.
  33. Elisabeth Gassner and Johannes Hatzl. A parity domination problem in graphs with bounded treewidth and distance-hereditary graphs. Computing, 82(2-3):171-187, July 2008. URL: https://doi.org/10.1007/s00607-008-0005-8.
  34. John Goldwasser, William Klostermeyer, and George Trapp. Characterizing switch-setting problems. Linear and Multilinear Algebra, 43(1-3):121-135, 1997. URL: https://doi.org/10.1080/03081089708818520.
  35. Petr A. Golovach, Jan Kratochvíl, and Ondrej Suchý. Parameterized complexity of generalized domination problems. Discret. Appl. Math., 160(6):780-792, 2012. URL: https://doi.org/10.1016/J.DAM.2010.11.012.
  36. Jakob Greilhuber. Shining light on periodic dominating sets in bounded-treewidth graphs. Master’s thesis, TU Wien, 2024. URL: https://doi.org/10.34726/hss.2024.120579.
  37. Magnús M. Halldórsson, Jan Kratochvíl, and Jan Arne Telle. Independent sets with domination constraints. Discret. Appl. Math., 99(1-3):39-54, 2000. URL: https://doi.org/10.1016/S0166-218X(99)00124-9.
  38. Magnús M. Halldórsson, Jan Kratochvíl, and Jan Arne Telle. Mod-2 independence and domination in graphs. Int. J. Found. Comput. Sci., 11(3):355-363, 2000. URL: https://doi.org/10.1142/S0129054100000272.
  39. Stephen T. Hedetniemi and Renu C. Laskar. Bibliography on domination in graphs and some basic definitions of domination parameters. Discret. Math., 86(1-3):257-277, 1990. URL: https://doi.org/10.1016/0012-365X(90)90365-O.
  40. Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst. Sci., 62(2):367-375, 2001. URL: https://doi.org/10.1006/jcss.2000.1727.
  41. Samir Khuller, Manish Purohit, and Kanthi K. Sarpatwar. Analyzing the optimal neighborhood: Algorithms for budgeted and partial connected dominating set problems. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1702-1713. SIAM, 2014. URL: https://doi.org/10.1137/1.9781611973402.123.
  42. Tuukka Korhonen. A single-exponential time 2-approximation algorithm for treewidth. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 184-192. IEEE, 2021. URL: https://doi.org/10.1109/FOCS52979.2021.00026.
  43. Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools for kernelization. J. ACM, 67(3):16:1-16:50, 2020. URL: https://doi.org/10.1145/3390887.
  44. Michael Lampis. Finer tight bounds for coloring on clique-width. SIAM J. Discret. Math., 34(3):1538-1558, 2020. URL: https://doi.org/10.1137/19M1280326.
  45. Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of bounded treewidth are probably optimal. ACM Trans. Algorithms, 14(2):13:1-13:30, April 2018. URL: https://doi.org/10.1145/3170442.
  46. Dániel Marx. Four shorts stories on surprising algorithmic uses of treewidth. In Fedor V. Fomin, Stefan Kratsch, and Erik Jan van Leeuwen, editors, Treewidth, Kernels, and Algorithms - Essays Dedicated to Hans L. Bodlaender on the Occasion of His 60th Birthday, volume 12160 of Lecture Notes in Computer Science, pages 129-144. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-42071-0_10.
  47. Dániel Marx, Govind S. Sankar, and Philipp Schepper. Degrees and gaps: Tight complexity results of general factor problems parameterized by treewidth and cutwidth. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 95:1-95:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPICS.ICALP.2021.95.
  48. Dániel Marx, Govind S. Sankar, and Philipp Schepper. Anti-factor is FPT parameterized by treewidth and list size (but counting is hard). In Holger Dell and Jesper Nederlof, editors, 17th International Symposium on Parameterized and Exact Computation, IPEC 2022, September 7-9, 2022, Potsdam, Germany, volume 249 of LIPIcs, pages 22:1-22:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPICS.IPEC.2022.22.
  49. Mohsen Alambardar Meybodi, Fedor V. Fomin, Amer E. Mouawad, and Fahad Panolan. On the parameterized complexity of [1, j]-domination problems. Theor. Comput. Sci., 804:207-218, 2020. URL: https://doi.org/10.1016/j.tcs.2019.11.032.
  50. Neeldhara Misra and Piyush Rathi. The parameterized complexity of dominating set and friends revisited for structured graphs. In René van Bevern and Gregory Kucherov, editors, Computer Science - Theory and Applications - 14th International Computer Science Symposium in Russia, CSR 2019, Novosibirsk, Russia, July 1-5, 2019, Proceedings, volume 11532 of Lecture Notes in Computer Science, pages 299-310. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-19955-5_26.
  51. Karolina Okrasa and Pawel Rzazewski. Fine-grained complexity of graph homomorphism problem for bounded-treewidth graphs. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 1578-1590. SIAM, 2020. URL: https://doi.org/10.1137/1.9781611975994.97.
  52. Geevarghese Philip, Venkatesh Raman, and Somnath Sikdar. Solving dominating set in larger classes of graphs: FPT algorithms and polynomial kernels. In Amos Fiat and Peter Sanders, editors, Algorithms - ESA 2009, 17th Annual European Symposium, Copenhagen, Denmark, September 7-9, 2009. Proceedings, volume 5757 of Lecture Notes in Computer Science, pages 694-705. Springer, 2009. URL: https://doi.org/10.1007/978-3-642-04128-0_62.
  53. Hadas Shachnai and Meirav Zehavi. Representative families: A unified tradeoff-based approach. In Andreas S. Schulz and Dorothea Wagner, editors, Algorithms - ESA 2014 - 22th Annual European Symposium, Wroclaw, Poland, September 8-10, 2014. Proceedings, volume 8737 of Lecture Notes in Computer Science, pages 786-797. Springer, 2014. URL: https://doi.org/10.1007/978-3-662-44777-2_65.
  54. Shay Solomon and Amitai Uzrad. Dynamic ((1+ε) ln n)-approximation algorithms for minimum set cover and dominating set. In Barna Saha and Rocco A. Servedio, editors, Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 1187-1200. ACM, 2023. URL: https://doi.org/10.1145/3564246.3585211.
  55. Klaus Sutner. Additive automata on graphs. Complex Syst., 2(6), 1988. URL: http://www.complex-systems.com/abstracts/v02_i06_a03.html.
  56. Klaus Sutner. Linear cellular automata and the garden-of-eden. The Mathematical Intelligencer, 11(2):49-53, 1989. URL: https://doi.org/10.1007/BF03023823.
  57. Jan Arne Telle. Complexity of domination-type problems in graphs. Nord. J. Comput., 1(1):157-171, 1994. Google Scholar
  58. Jan Arne Telle and Andrzej Proskurowski. Practical algorithms on partial k-trees with an application to domination-like problems. In Frank K. H. A. Dehne, Jörg-Rüdiger Sack, Nicola Santoro, and Sue Whitesides, editors, Algorithms and Data Structures, Third Workshop, WADS '93, Montréal, Canada, August 11-13, 1993, Proceedings, volume 709 of Lecture Notes in Computer Science, pages 610-621. Springer, 1993. URL: https://doi.org/10.1007/3-540-57155-8_284.
  59. Kuo-Hui Tsai and Wen-Lian Hsu. Fast algorithms for the dominating set problem on permutation graphs. In Tetsuo Asano, Toshihide Ibaraki, Hiroshi Imai, and Takao Nishizeki, editors, Algorithms, International Symposium SIGAL '90, Tokyo, Japan, August 16-18, 1990, Proceedings, volume 450 of Lecture Notes in Computer Science, pages 109-117. Springer, 1990. URL: https://doi.org/10.1007/3-540-52921-7_60.
  60. Johan M. M. van Rooij. Fast algorithms for join operations on tree decompositions. In Fedor V. Fomin, Stefan Kratsch, and Erik Jan van Leeuwen, editors, Treewidth, Kernels, and Algorithms - Essays Dedicated to Hans L. Bodlaender on the Occasion of His 60th Birthday, volume 12160 of Lecture Notes in Computer Science, pages 262-297. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-42071-0_18.
  61. Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic programming on tree decompositions using generalised fast subset convolution. In Amos Fiat and Peter Sanders, editors, Algorithms - ESA 2009, 17th Annual European Symposium, Copenhagen, Denmark, September 7-9, 2009. Proceedings, volume 5757 of Lecture Notes in Computer Science, pages 566-577. Springer, 2009. URL: https://doi.org/10.1007/978-3-642-04128-0_51.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail