Local Enumeration: The Not-All-Equal Case

Authors Mohit Gurumukhani , Ramamohan Paturi, Michael Saks, Navid Talebanfard



PDF
Thumbnail PDF

File

LIPIcs.STACS.2025.42.pdf
  • Filesize: 0.89 MB
  • 19 pages

Document Identifiers

Author Details

Mohit Gurumukhani
  • Cornell University, Ithaca, NY, USA
Ramamohan Paturi
  • Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
Michael Saks
  • Department of Mathematics, Rutgers University, Piscataway, NJ, USA
Navid Talebanfard
  • University of Sheffield, UK

Acknowledgements

We want to thank Pavel Pudl{á}k for helpful discussions.

Cite As Get BibTex

Mohit Gurumukhani, Ramamohan Paturi, Michael Saks, and Navid Talebanfard. Local Enumeration: The Not-All-Equal Case. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 42:1-42:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.STACS.2025.42

Abstract

Gurumukhani et al. (CCC'24) proposed the local enumeration problem Enum(k, t) as an approach to break the Super Strong Exponential Time Hypothesis (SSETH): for a natural number k and a parameter t, given an n-variate k-CNF with no satisfying assignment of Hamming weight less than t(n), enumerate all satisfying assignments of Hamming weight exactly t(n). Furthermore, they gave a randomized algorithm for Enum(k, t) and employed new ideas to analyze the first non-trivial case, namely k = 3. In particular, they solved Enum(3, n/2) in expected 1.598ⁿ time. A simple construction shows a lower bound of 6^{n/4} ≈ 1.565ⁿ.
In this paper, we show that to break SSETH, it is sufficient to consider a simpler local enumeration problem NAE-Enum(k, t): for a natural number k and a parameter t, given an n-variate k-CNF with no satisfying assignment of Hamming weight less than t(n), enumerate all Not-All-Equal (NAE) solutions of Hamming weight exactly t(n), i.e., those that satisfy and falsify some literal in every clause. We refine the algorithm of Gurumukhani et al. and show that it optimally solves NAE-Enum(3, n/2), namely, in expected time poly(n) ⋅ 6^{n/4}.

Subject Classification

ACM Subject Classification
  • Theory of computation → Circuit complexity
Keywords
  • Depth 3 circuits
  • k-CNF satisfiability
  • Circuit lower bounds
  • Majority function

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Kazuyuki Amano. Depth-three circuits for inner product and majority functions. In Satoru Iwata and Naonori Kakimura, editors, 34th International Symposium on Algorithms and Computation, ISAAC 2023, December 3-6, 2023, Kyoto, Japan, volume 283 of LIPIcs, pages 7:1-7:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.ISAAC.2023.7.
  2. Evgeny Dantsin, Andreas Goerdt, Edward A. Hirsch, Ravi Kannan, Jon M. Kleinberg, Christos H. Papadimitriou, Prabhakar Raghavan, and Uwe Schöning. A deterministic (2-2/(k+1))ⁿ algorithm for k-SAT based on local search. Theor. Comput. Sci., 289(1):69-83, 2002. URL: https://doi.org/10.1016/S0304-3975(01)00174-8.
  3. Peter Frankl, Svyatoslav Gryaznov, and Navid Talebanfard. A variant of the VC-dimension with applications to depth-3 circuits. In Mark Braverman, editor, 13th Innovations in Theoretical Computer Science Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley, CA, USA, volume 215 of LIPIcs, pages 72:1-72:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.ITCS.2022.72.
  4. Mohit Gurumukhani, Marvin Künnemann, and Ramamohan Paturi. On extremal properties of k-cnf: Capturing threshold functions. CoRR, abs/2412.20493, 2024. URL: https://arxiv.org/abs/2412.20493.
  5. Mohit Gurumukhani, Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Navid Talebanfard. Local enumeration and majority lower bounds. In Rahul Santhanam, editor, 39th Computational Complexity Conference, CCC 2024, July 22-25, 2024, Ann Arbor, MI, USA, volume 300 of LIPIcs, pages 17:1-17:25. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. URL: https://doi.org/10.4230/LIPICS.CCC.2024.17.
  6. Thomas Dueholm Hansen, Haim Kaplan, Or Zamir, and Uri Zwick. Faster k-SAT algorithms using biased-PPSZ. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 578-589. ACM, 2019. URL: https://doi.org/10.1145/3313276.3316359.
  7. Johan Håstad, Stasys Jukna, and Pavel Pudlák. Top-down lower bounds for depth-three circuits. Comput. Complex., 5(2):99-112, 1995. URL: https://doi.org/10.1007/BF01268140.
  8. Timon Hertli. Breaking the PPSZ barrier for unique 3-SAT. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, volume 8572 of Lecture Notes in Computer Science, pages 600-611. Springer, 2014. URL: https://doi.org/10.1007/978-3-662-43948-7_50.
  9. Victor Lecomte, Prasanna Ramakrishnan, and Li-Yang Tan. The composition complexity of majority. In Shachar Lovett, editor, 37th Computational Complexity Conference, CCC 2022, July 20-23, 2022, Philadelphia, PA, USA, volume 234 of LIPIcs, pages 19:1-19:26. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.CCC.2022.19.
  10. Burkhard Monien and Ewald Speckenmeyer. Solving satisfiability in less than 2ⁿ steps. Discret. Appl. Math., 10(3):287-295, 1985. URL: https://doi.org/10.1016/0166-218X(85)90050-2.
  11. Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Francis Zane. An improved exponential-time algorithm for k-SAT. J. ACM, 52(3):337-364, 2005. URL: https://doi.org/10.1145/1066100.1066101.
  12. Ramamohan Paturi, Pavel Pudlák, and Francis Zane. Satisfiability coding lemma. Chic. J. Theor. Comput. Sci., 1999, 1999. URL: http://cjtcs.cs.uchicago.edu/articles/1999/11/contents.html.
  13. Dominik Scheder. PPSZ is better than you think. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 205-216. IEEE, 2021. URL: https://doi.org/10.1109/FOCS52979.2021.00028.
  14. Dominik Scheder and Navid Talebanfard. Super strong ETH is true for PPSZ with small resolution width. In Shubhangi Saraf, editor, 35th Computational Complexity Conference, CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume 169 of LIPIcs, pages 3:1-3:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.CCC.2020.3.
  15. Uwe Schöning. A probabilistic algorithm for k-SAT based on limited local search and restart. Algorithmica, 32(4):615-623, 2002. URL: https://doi.org/10.1007/s00453-001-0094-7.
  16. Nikhil Vyas and R. Ryan Williams. On super strong ETH. J. Artif. Intell. Res., 70:473-495, 2021. URL: https://doi.org/10.1613/JAIR.1.11859.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail