Sampling Unlabeled Chordal Graphs in Expected Polynomial Time

Authors Úrsula Hébert-Johnson , Daniel Lokshtanov



PDF
Thumbnail PDF

File

LIPIcs.STACS.2025.46.pdf
  • Filesize: 0.83 MB
  • 20 pages

Document Identifiers

Author Details

Úrsula Hébert-Johnson
  • University of California, Santa Barbara, CA, USA
Daniel Lokshtanov
  • University of California, Santa Barbara, CA, USA

Acknowledgements

We would like to thank Eric Vigoda for discussions that led to a concise proof of an important step in the running time analysis.

Cite As Get BibTex

Úrsula Hébert-Johnson and Daniel Lokshtanov. Sampling Unlabeled Chordal Graphs in Expected Polynomial Time. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 46:1-46:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.STACS.2025.46

Abstract

We design an algorithm that generates an n-vertex unlabeled chordal graph uniformly at random in expected polynomial time. Along the way, we develop the following two results: (1) an FPT algorithm for counting and sampling labeled chordal graphs with a given automorphism π, parameterized by the number of moved points of π, and (2) a proof that the probability that a random n-vertex labeled chordal graph has a given automorphism π ∈ S_n is at most 1/2^{c max{μ²,n}}, where μ is the number of moved points of π and c is a constant. Our algorithm for sampling unlabeled chordal graphs calls the aforementioned FPT algorithm as a black box with potentially large values of the parameter μ, but the probability of calling this algorithm with a large value of μ is exponentially small.

Subject Classification

ACM Subject Classification
  • Theory of computation → Generating random combinatorial structures
  • Theory of computation → Graph algorithms analysis
Keywords
  • Chordal graphs
  • graph sampling
  • graph counting
  • unlabeled graphs

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Edward A. Bender, L. Bruce Richmond, and Nicholas C. Wormald. Almost all chordal graphs split. Journal of the Australian Mathematical Society, 38(2):214-221, 1985. Google Scholar
  2. Vladislav Bína and Jiří Přibil. Note on enumeration of labeled split graphs. Commentationes Mathematicae Universitatis Carolinae, 56(2):133-137, 2015. Google Scholar
  3. Jean R.S. Blair and Barry Peyton. An introduction to chordal graphs and clique trees. In Graph theory and sparse matrix computation, pages 1-29. Springer, 1993. Google Scholar
  4. Manuel Bodirsky, Clemens Gröpl, and Mihyun Kang. Sampling unlabeled biconnected planar graphs. In Algorithms and Computation: 16th International Symposium, ISAAC 2005, Sanya, Hainan, China, December 19-21, 2005. Proceedings 16, pages 593-603. Springer, 2005. URL: https://doi.org/10.1007/11602613_60.
  5. Manuel Bodirsky, Clemens Gröpl, and Mihyun Kang. Generating labeled planar graphs uniformly at random. Theoretical Computer Science, 379(3):377-386, 2007. URL: https://doi.org/10.1016/J.TCS.2007.02.045.
  6. Manuel Bodirsky, Clemens Gröpl, and Mihyun Kang. Generating unlabeled connected cubic planar graphs uniformly at random. Random Structures & Algorithms, 32(2):157-180, 2008. URL: https://doi.org/10.1002/RSA.20206.
  7. John D. Dixon and Herbert S. Wilf. The random selection of unlabeled graphs. Journal of Algorithms, 4(3):205-213, 1983. URL: https://doi.org/10.1016/0196-6774(83)90021-4.
  8. Éric Fusy. Uniform random sampling of planar graphs in linear time. Random Structures & Algorithms, 35(4):464-522, 2009. URL: https://doi.org/10.1002/RSA.20275.
  9. Andrew Gainer-Dewar and Ira M. Gessel. Counting unlabeled k-trees. Journal of Combinatorial Theory, Series A, 126:177-193, 2014. URL: https://doi.org/10.1016/J.JCTA.2014.05.002.
  10. Pu Gao and Nicholas Wormald. Uniform generation of random regular graphs. SIAM Journal on Computing, 46:1395-1427, 2017. URL: https://doi.org/10.1137/15M1052779.
  11. Pu Gao and Nicholas Wormald. Uniform generation of random graphs with power-law degree sequences. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1741-1758, 2018. URL: https://doi.org/10.1137/1.9781611975031.114.
  12. Fănică Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph. SIAM Journal on Computing, 1(2):180-187, 1972. URL: https://doi.org/10.1137/0201013.
  13. András Hajnal and János Surányi. Über die auflösung von graphen in vollständige teilgraphen. Ann. Univ. Sci. Budapest, Eötvös Sect. Math, 1:113-121, 1958. Google Scholar
  14. Úrsula Hébert-Johnson, Daniel Lokshtanov, and Eric Vigoda. Counting and sampling labeled chordal graphs in polynomial time, 2023. URL: https://doi.org/10.48550/arXiv.2308.09703.
  15. Mark R. Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combinatorial structures from a uniform distribution. Theoretical Computer Science, 43:169-188, 1986. URL: https://doi.org/10.1016/0304-3975(86)90174-X.
  16. Walter Oberschelp. Kombinatorische anzahlbestimmungen in relationen. Mathematische Annalen, 174:53-78, 1967. Google Scholar
  17. OEIS Foundation Inc. Entry A058862 in the On-Line Encyclopedia of Integer Sequences, 2024. Published electronically at http://oeis.org. Google Scholar
  18. Toshiki Saitoh, Yota Otachi, Katsuhisa Yamanaka, and Ryuhei Uehara. Random generation and enumeration of bipartite permutation graphs. Journal of Discrete Algorithms, 10:84-97, 2012. URL: https://doi.org/10.1016/J.JDA.2011.11.001.
  19. Herbert S. Wilf. The uniform selection of free trees. Journal of Algorithms, 2(2):204-207, 1981. URL: https://doi.org/10.1016/0196-6774(81)90021-3.
  20. Nicholas C. Wormald. Generating random unlabelled graphs. SIAM Journal on Computing, 16(4):717-727, 1987. URL: https://doi.org/10.1137/0216048.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail