Subshifts Defined by Nondeterministic and Alternating Plane-Walking Automata

Authors Benjamin Hellouin de Menibus , Pacôme Perrotin



PDF
Thumbnail PDF

File

LIPIcs.STACS.2025.48.pdf
  • Filesize: 0.74 MB
  • 15 pages

Document Identifiers

Author Details

Benjamin Hellouin de Menibus
  • Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, 91400, Orsay, France
Pacôme Perrotin
  • Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, 91400, Orsay, France

Acknowledgements

Many people have contributed to this article through discussions, suggestions and failed attempts; we wish to thank (in alphabetical order) Florent Becker, Amélia Durbec, Pierre Guillon and Guillaume Theyssier. We are grateful to Ville Salo for providing the proof of Theorem 8 and pointing us towards the Kari-Moore rectangles of Section 5.3, and to Denis Kuperberg and Thomas Colcombet for pointing us towards works on tree-walking automata cited in Section 5.2.

Cite As Get BibTex

Benjamin Hellouin de Menibus and Pacôme Perrotin. Subshifts Defined by Nondeterministic and Alternating Plane-Walking Automata. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 48:1-48:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.STACS.2025.48

Abstract

Plane-walking automata were introduced by Salo & Törma to recognise languages of two-dimensional infinite words (subshifts), the counterpart of 4-way finite automata for two-dimensional finite words. We extend the model to allow for nondeterminism and alternation of quantifiers. We prove that the recognised subshifts form a strict subclass of sofic subshifts, and that the classes corresponding to existential and universal nondeterminism are incomparable and both larger that the deterministic class. We define a hierarchy of subshifts recognised by plane-walking automata with alternating quantifiers, which we conjecture to be strict.

Subject Classification

ACM Subject Classification
  • Theory of computation → Automata over infinite objects
  • Theory of computation → Tree languages
  • Theory of computation → Regular languages
Keywords
  • Formal languages
  • Finite automata
  • Subshifts
  • Symbolic dynamics
  • Tilings

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Marcella Anselmo and Maria Madonia. Classes of two-dimensional languages and recognizability conditions. RAIRO Theor. Informatics Appl., 44(4):471-488, 2010. URL: https://doi.org/10.1051/ita/2011003.
  2. Nathalie Aubrun and Mathieu Sablik. Simulation of effective subshifts by two-dimensional subshifts of finite type. CoRR, abs/1602.06095:35-63, 2016. URL: https://doi.org/10.48550/arXiv.1602.06095.
  3. Manuel Blum and Carl Hewitt. Automata on a 2-dimensional tape. In 8th Annual Symposium on Switching and Automata Theory, Austin, Texas, USA, October 18-20, 1967, pages 155-160. IEEE, IEEE Computer Society, 1967. URL: https://doi.org/10.1109/FOCS.1967.6.
  4. Mikolaj Bojanczyk and Thomas Colcombet. Tree-walking automata do not recognize all regular languages. In Harold N. Gabow and Ronald Fagin, editors, Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005, pages 234-243. ACM, 2005. URL: https://doi.org/10.1145/1060590.1060626.
  5. Bruno Durand, Andrei Romashchenko, and Alexander Shen. Fixed-point tile sets and their applications. Journal of Computer and System Sciences, 78(3):731-764, 2012. URL: https://doi.org/10.1016/j.jcss.2011.11.001.
  6. Dora Giammarresi and Antonio Restivo. Recognizable picture languages. International Journal of Pattern Recognition and Artificial Intelligence, 6(2&3):241-256, 1992. URL: https://doi.org/10.1142/S021800149200014X.
  7. Dora Giammarresi and Antonio Restivo. Two-dimensional languages. In Grzegorz Rozenberg and Arto Salomaa, editors, Handbook of Formal Languages, Volume 3: Beyond Words, pages 215-267. Springer, 1997. URL: https://doi.org/10.1007/978-3-642-59126-6_4.
  8. Nataša Jonoska and Joni B. Pirnot. Finite state automata representing two-dimensional subshifts. Theoretical computer science, 410(37):3504-3512, 2009. URL: https://doi.org/10.1016/j.tcs.2009.03.015.
  9. Jarkko Kari and Cristopher Moore. New results on alternating and non-deterministic two-dimensional finite-state automata. In Afonso Ferreira and Horst Reichel, editors, Annual Symposium on Theoretical Aspects of Computer Science, volume 2010 of Lecture Notes in Computer Science, pages 396-406. Springer, 2001. URL: https://doi.org/10.1007/3-540-44693-1_35.
  10. Jarkko Kari and Cristopher Moore. Rectangles and squares recognized by two-dimensional automata. In Juhani Karhumäki, Hermann A. Maurer, Gheorghe Paun, and Grzegorz Rozenberg, editors, Theory is Forever: Essays Dedicated to Arto Salomaa on the Occasion of His 70th Birthday, volume 3113 of Lecture Notes in Computer Science, pages 134-144. Springer, 2004. URL: https://doi.org/10.1007/978-3-540-27812-2_13.
  11. Jarkko Kari and Ville Salo. A survey on picture-walking automata. In Werner Kuich and George Rahonis, editors, Algebraic Foundations in Computer Science - Essays Dedicated to Symeon Bozapalidis on the Occasion of His Retirement, volume 7020 of Lecture Notes in Computer Science, pages 183-213. Springer, 2011. URL: https://doi.org/10.1007/978-3-642-24897-9_9.
  12. Douglas Lind and Brian Marcus. An introduction to symbolic dynamics and coding. Cambridge University Press, 1995. Google Scholar
  13. Ville Salo. Four heads are better than three. In Hector Zenil, editor, Cellular Automata and Discrete Complex Systems - 26th IFIP WG 1.5 International Workshop, AUTOMATA 2020, Stockholm, Sweden, August 10-12, 2020, Proceedings, volume 12286 of Lecture Notes in Computer Science, pages 111-125. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-61588-8_9.
  14. Ville Salo and Ilkka Törmä. Plane-walking automata. In Teijiro Isokawa, Katsunobu Imai, Nobuyuki Matsui, Ferdinand Peper, and Hiroshi Umeo, editors, Cellular Automata and Discrete Complex Systems - 20th International Workshop, AUTOMATA 2014, Himeji, Japan, July 7-9, 2014, Revised Selected Papers, volume 8996 of Lecture Notes in Computer Science, pages 135-148. Springer, 2014. URL: https://doi.org/10.1007/978-3-319-18812-6_11.
  15. Ville Salo and Ilkka Törmä. Group-walking automata. In Jarkko Kari, editor, Cellular Automata and Discrete Complex Systems: 21st IFIP WG 1.5 International Workshop, AUTOMATA 2015, Turku, Finland, June 8-10, 2015. Proceedings 21, volume 9099 of Lecture Notes in Computer Science, pages 224-237. Springer, 2015. URL: https://doi.org/10.1007/978-3-662-47221-7_17.
  16. Balder ten Cate and Luc Segoufin. Transitive closure logic, nested tree walking automata, and xpath. J. ACM, 57(3):18:1-18:41, 2010. URL: https://doi.org/10.1145/1706591.1706598.
  17. Véronique Terrier. Communication complexity tools on recognizable picture languages. Theoretical Computer Science, 795:194-203, 2019. URL: https://doi.org/10.1016/j.tcs.2019.05.040.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail