Parameterized Saga of First-Fit and Last-Fit Coloring

Authors Akanksha Agrawal , Daniel Lokshtanov , Fahad Panolan , Saket Saurabh , Shaily Verma



PDF
Thumbnail PDF

File

LIPIcs.STACS.2025.5.pdf
  • Filesize: 1.09 MB
  • 21 pages

Document Identifiers

Author Details

Akanksha Agrawal
  • Indian Institute of Technology Madras, India
Daniel Lokshtanov
  • University of California, Santa Barbara,CA, USA
Fahad Panolan
  • School of Computer Science, University of Leeds, UK
Saket Saurabh
  • The Institute of Mathematical Sciences, HBNI, Chennai, India
  • Department of Informatics, University of Bergen, Norway
Shaily Verma
  • Algorithm Engineering Group, Hasso Plattner Institute, Potsdam, Germany

Cite As Get BibTex

Akanksha Agrawal, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Shaily Verma. Parameterized Saga of First-Fit and Last-Fit Coloring. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 5:1-5:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.STACS.2025.5

Abstract

The classic greedy coloring algorithm considers the vertices of an input graph G in a given order and assigns the first available color to each vertex v in G. In the Grundy Coloring problem, the task is to find an ordering of the vertices that will force the greedy algorithm to use as many colors as possible. In the Partial Grundy Coloring, the task is also to color the graph using as many colors as possible. This time, however, we may select both the ordering in which the vertices are considered and which color to assign the vertex. The only constraint is that the color assigned to a vertex v is a color previously used for another vertex if such a color is available. 
Whether Grundy Coloring and Partial Grundy Coloring admit fixed-parameter tractable (FPT) algorithms, algorithms with running time f(k)n^O(1), where k is the number of colors, was posed as an open problem by Zaker and by Effantin et al., respectively.
Recently, Aboulker et al. (STACS 2020 and Algorithmica 2022) resolved the question for Grundy Coloring in the negative by showing that the problem is W[1]-hard. For Partial Grundy Coloring, they obtain an FPT algorithm on graphs that do not contain K_{i,j} as a subgraph (a.k.a. K_{i,j}-free graphs). Aboulker et al. re-iterate the question of whether there exists an FPT algorithm for Partial Grundy Coloring on general graphs and also asks whether Grundy Coloring admits an FPT algorithm on K_{i,j}-free graphs. We give FPT algorithms for Partial Grundy Coloring on general graphs and for Grundy Coloring on K_{i,j}-free graphs, resolving both the questions in the affirmative. We believe that our new structural theorems for partial Grundy coloring and "representative-family" like sets for K_{i,j}-free graphs that we use in obtaining our results may have wider algorithmic applications.

Subject Classification

ACM Subject Classification
  • Theory of computation → Fixed parameter tractability
Keywords
  • Grundy Coloring
  • Partial Grundy Coloring
  • FPT Algorithm
  • K_{i,j}-free graphs

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Pierre Aboulker, Édouard Bonnet, Eun Jung Kim, and Florian Sikora. Grundy coloring and friends, half-graphs, bicliques. Algorithmica, pages 1-28, 2022. URL: https://doi.org/10.1007/S00453-022-01001-2.
  2. Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844-856, 1995. URL: https://doi.org/10.1145/210332.210337.
  3. Júlio César Silva Araújo and Cláudia Linhares Sales. Grundy number on p_4-classes. Electron. Notes Discret. Math., 35:21-27, 2009. URL: https://doi.org/10.1016/J.ENDM.2009.11.005.
  4. R. Balakrishnan and T Kavaskar. Interpolation theorem for partial grundy coloring. Discrete Mathematics, 313(8):949-950, 2013. URL: https://doi.org/10.1016/J.DISC.2013.01.018.
  5. Rangaswami Balakrishnan and T. Kavaskar. Color chain of a graph. Graphs Comb., 27(4):487-493, 2011. URL: https://doi.org/10.1007/S00373-010-0989-7.
  6. Rémy Belmonte, Eun Jung Kim, Michael Lampis, Valia Mitsou, and Yota Otachi. Grundy distinguishes treewidth from pathwidth. In 28th Annual European Symposium on Algorithms (ESA 2020). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. Google Scholar
  7. Édouard Bonnet, Florent Foucaud, Eun Jung Kim, and Florian Sikora. Complexity of grundy coloring and its variants. Discret. Appl. Math., 243:99-114, 2018. URL: https://doi.org/10.1016/J.DAM.2017.12.022.
  8. Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E. Hopkins, and Peter W. Markstein. Register allocation via coloring. Comput. Lang., 6(1):47-57, 1981. URL: https://doi.org/10.1016/0096-0551(81)90048-5.
  9. CWK Chen and David YY Yun. Unifying graph-matching problem with a practical solution. In Proceedings of International Conference on Systems, Signals, Control, Computers, volume 55, 1998. Google Scholar
  10. C. A. Christen and S. M. Selkow. Some perfect coloring properties of graphs. Journal of Combinatorial Theory, Series B, 27(1):49-59, 1979. URL: https://doi.org/10.1016/0095-8956(79)90067-4.
  11. Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 5. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  12. Lyes Dekar, Brice Effantin, and Hamamache Kheddouci. An incremental distributed algorithm for a partial grundy coloring of graphs. In Ivan Stojmenovic, Ruppa K. Thulasiram, Laurence Tianruo Yang, Weijia Jia, Minyi Guo, and Rodrigo Fernandes de Mello, editors, Parallel and Distributed Processing and Applications, 5th International Symposium, ISPA 2007, Niagara Falls, Canada, August 29-31, 2007, Proceedings, volume 4742 of Lecture Notes in Computer Science, pages 170-181. Springer, 2007. URL: https://doi.org/10.1007/978-3-540-74742-0_18.
  13. Reinhard Diestel. Graph theory, volume 173. Springer-Verlag Heidelberg, 2017. Google Scholar
  14. Irit Dinur, Elchanan Mossel, and Oded Regev. Conditional hardness for approximate coloring. SIAM J. Comput., 39(3):843-873, 2009. URL: https://doi.org/10.1137/07068062X.
  15. B. Effantin, N. Gastineau, and O. Togni. A characterization of b-chromatic and partial grundy numbers by induced subgraphs. Discrete Mathematics, 339(8):2157-2167, 2016. URL: https://doi.org/10.1016/J.DISC.2016.03.011.
  16. P. Erdös, S. T. Hedetniemi, R. C. Laskar, and G. C. E. Prins. On the equality of the partial grundy and upper ochromatic numbers of graphs. Discrete Mathematics, 272(1):53-64, 2003. URL: https://doi.org/10.1016/S0012-365X(03)00184-5.
  17. P Fahad. Dynamic Programming using Representative Families. PhD thesis, Homi Bhabha National Institute, 2015. Google Scholar
  18. Uriel Feige and Joe Kilian. Zero knowledge and the chromatic number. J. Comput. Syst. Sci., 57(2):187-199, 1998. URL: https://doi.org/10.1006/JCSS.1998.1587.
  19. Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation of representative families with applications in parameterized and exact algorithms. J. ACM, 63(4):29:1-29:60, 2016. URL: https://doi.org/10.1145/2886094.
  20. N. Goyal and S. Vishwanathan. Np-completeness of undirected grundy numbering and related problems. Unpublished manuscript, 1997. Google Scholar
  21. P. M. Grundy. Mathematics and games. Eureka, 2:6-9, 1939. Google Scholar
  22. András Gyárfás, Zoltán Király, and Jenö Lehel. On-line 3-chromatic graphs i. triangle-free graphs. SIAM J. Discret. Math., 12(3):385-411, 1999. URL: https://doi.org/10.1137/S089548019631030X.
  23. F. Havet and L. Sampaio. On the grundy and b-chromatic numbers of a graph. Algorithmica, 65(4):885-899, 2013. URL: https://doi.org/10.1007/S00453-011-9604-4.
  24. S. M. Hedetniemi, S. T. Hedetniemi, and T. Beyer. A linear algorithm for the grundy (coloring) number of a tree. Congressus Numerantium, 36:351-363, 1982. Google Scholar
  25. Allen Ibiapina and Ana Silva. b-continuity and partial grundy coloring of graphs with large girth. Discrete Mathematics, 343(8):111920, 2020. URL: https://doi.org/10.1016/J.DISC.2020.111920.
  26. Hal A. Kierstead and Karin Rebecca Saoub. First-fit coloring of bounded tolerance graphs. Discret. Appl. Math., 159(7):605-611, 2011. URL: https://doi.org/10.1016/J.DAM.2010.05.002.
  27. Guy Kortsarz. A lower bound for approximating the grundy number. Discrete Mathematics & Theoretical Computer Science, 9, 2007. Google Scholar
  28. Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Roohani Sharma, and Meirav Zehavi. Covering small independent sets and separators with applications to parameterized algorithms. ACM Transactions on Algorithms (TALG), 16(3):1-31, 2020. URL: https://doi.org/10.1145/3379698.
  29. Dániel Marx. Graph colouring problems and their applications in scheduling. Periodica Polytechnica Electrical Engineering (Archives), 48(1-2):11-16, 2004. Google Scholar
  30. Dániel Marx. A parameterized view on matroid optimization problems. Theor. Comput. Sci., 410(44):4471-4479, 2009. URL: https://doi.org/10.1016/J.TCS.2009.07.027.
  31. Moni Naor, Leonard J Schulman, and Aravind Srinivasan. Splitters and near-optimal derandomization. In Proceedings of IEEE 36th Annual Foundations of Computer Science, pages 182-191. IEEE, 1995. URL: https://doi.org/10.1109/SFCS.1995.492475.
  32. B. S. Panda and Shaily Verma. On partial grundy coloring of bipartite graphs and chordal graphs. Discret. Appl. Math., 271:171-183, 2019. URL: https://doi.org/10.1016/J.DAM.2019.08.005.
  33. L. Sampaio. Algorithmic aspects of graph colourings heuristics. PhD thesis, University Nice Sophia Antipolis, 2012. Google Scholar
  34. Z. Shi, W. Goddard, S. T. Hedetniemi, K. Kennedy, R. Laskar, and A. McRae. An algorithm for partial grundy number on trees. Discrete Mathematics, 304(1-3):108-116, 2005. URL: https://doi.org/10.1016/J.DISC.2005.09.008.
  35. Zixing Tang, Baoyindureng Wu, Lin Hu, and Manouchehr Zaker. More bounds for the grundy number of graphs. J. Comb. Optim., 33(2):580-589, 2017. URL: https://doi.org/10.1007/S10878-015-9981-8.
  36. Shaily Verma and B. S. Panda. Grundy coloring in some subclasses of bipartite graphs and their complements. Information Processing Letters, 163:105999, 2020. URL: https://doi.org/10.1016/J.IPL.2020.105999.
  37. M. Zaker. Grundy chromatic number of the complement of bipartite graphs. Australasian Journal of Combinatorics, 31:325-330, 2005. URL: http://ajc.maths.uq.edu.au/pdf/31/ajc_v31_p325.pdf.
  38. M. Zaker. Results on the grundy chromatic number of graphs. Discrete mathematics, 306(23):3166-3173, 2006. URL: https://doi.org/10.1016/J.DISC.2005.06.044.
  39. Manouchehr Zaker. Inequalities for the grundy chromatic number of graphs. Discret. Appl. Math., 155(18):2567-2572, 2007. URL: https://doi.org/10.1016/J.DAM.2007.07.002.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail