Designing Exploration Contracts

Authors Martin Hoefer , Conrad Schecker , Kevin Schewior



PDF
Thumbnail PDF

File

LIPIcs.STACS.2025.50.pdf
  • Filesize: 0.74 MB
  • 19 pages

Document Identifiers

Author Details

Martin Hoefer
  • Department of Computer Science, RWTH Aachen University, Germany
Conrad Schecker
  • Institute for Computer Science, Goethe University Frankfurt, Germany
Kevin Schewior
  • Department of Mathematics and Computer Science, University of Cologne, Germany
  • University of Southern Denmark, Odense, Denmark

Cite As Get BibTex

Martin Hoefer, Conrad Schecker, and Kevin Schewior. Designing Exploration Contracts. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 50:1-50:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.STACS.2025.50

Abstract

We study a natural application of contract design in the context of sequential exploration problems. In our principal-agent setting, a search task is delegated to an agent. The agent performs a sequential exploration of n boxes, suffers the exploration cost for each inspected box, and selects the content (called the prize) of one inspected box as outcome. Agent and principal obtain an individual value based on the selected prize. To influence the search, the principal a-priori designs a contract with a non-negative payment to the agent for each potential prize. The goal of the principal is to maximize her expected reward, i.e., value minus payment. Interestingly, this natural contract scenario shares close relations with the Pandora’s Box problem. 
We show how to compute optimal contracts for the principal in several scenarios. A popular and important subclass is that of linear contracts, and we show how to compute optimal linear contracts in polynomial time. For general contracts, we obtain optimal contracts under the standard assumption that the agent suffers cost but obtains value only from the transfers by the principal. More generally, for general contracts with non-zero agent values for outcomes we show how to compute an optimal contract in two cases: (1) when each box has only one prize with non-zero value for principal and agent, (2) for i.i.d. boxes with a single prize with positive value for the principal.

Subject Classification

ACM Subject Classification
  • Theory of computation → Algorithmic game theory and mechanism design
Keywords
  • Exploration
  • Contract Design
  • Pandora’s Box Problem

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Tal Alon, Paul Duetting, Yingkai Li, and Inbal Talgam-Cohen. Bayesian analysis of linear contracts. In Proc. 24th Conf. Econ. Comput. (EC), page 66, 2023. URL: https://doi.org/10.1145/3580507.3597795.
  2. Tal Alon, Paul Dütting, and Inbal Talgam-Cohen. Contracts with private cost per unit-of-effort. In Proc. 22nd Conf. Econ. Comput. (EC), pages 52-69, 2021. URL: https://doi.org/10.1145/3465456.3467651.
  3. Yakov Babichenko, Inbal Talgam-Cohen, Haifeng Xu, and Konstantin Zabarnyi. Regret-minimizing bayesian persuasion. Games Econ. Behav., 136:226-248, 2022. URL: https://doi.org/10.1016/J.GEB.2022.09.001.
  4. Curtis Bechtel and Shaddin Dughmi. Delegated Stochastic Probing. In Proc. Symp. Innov. Theoret. Comput. Sci. (ITCS), pages 37:1-37:19, 2021. URL: https://doi.org/10.4230/LIPICS.ITCS.2021.37.
  5. Curtis Bechtel, Shaddin Dughmi, and Neel Patel. Delegated Pandora’s box. In Proc. 23rd Conf. Econ. Comput. (EC), pages 666-693, 2022. URL: https://doi.org/10.1145/3490486.3538267.
  6. Hedyeh Beyhaghi and Linda Cai. Pandora’s problem with nonobligatory inspection: Optimal structure and a PTAS. In Proc. 55th Symp. Theory Comput. (STOC), pages 803-816, 2023. URL: https://doi.org/10.1145/3564246.3585217.
  7. Hedyeh Beyhaghi and Linda Cai. Recent developments in Pandora’s Box problem: Variants and applications. ACM SIGecom Exchanges, 21(1):20-34, 2023. URL: https://doi.org/10.1145/3699814.3699817.
  8. Hedyeh Beyhaghi and Robert Kleinberg. Pandora’s problem with nonobligatory inspection. In Proc. 20th Conf. Econ. Comput. (EC), pages 131-132, 2019. URL: https://doi.org/10.1145/3328526.3329626.
  9. Patrick Bolton and Mathias Dewatripont. Contract Theory. MIT Press, 2005. Google Scholar
  10. Shant Boodaghians, Federico Fusco, Philip Lazos, and Stefano Leonardi. Pandora’s box problem with order constraints. Math. Oper. Res., 48(1):498-519, 2023. URL: https://doi.org/10.1287/MOOR.2022.1271.
  11. Pirmin Braun, Niklas Hahn, Martin Hoefer, and Conrad Schecker. Delegated online search. In Proc. Int. Joint Conf. Artif. Intell. (IJCAI), pages 2528-2536, 2023. URL: https://doi.org/10.24963/IJCAI.2023/281.
  12. Matteo Castiglioni, Andrea Celli, Alberto Marchesi, and Nicola Gatti. Online Bayesian persuasion. In Proc. Conf. Adv. Neural Inf. Processing Syst. (NeurIPS), 2020. Google Scholar
  13. Matteo Castiglioni, Alberto Marchesi, and Nicola Gatti. Bayesian agency: Linear versus tractable contracts. In Proc. 22nd Conf. Econ. Comput. (EC), pages 285-286, 2021. URL: https://doi.org/10.1145/3465456.3467602.
  14. Matteo Castiglioni, Alberto Marchesi, and Nicola Gatti. Designing menus of contracts efficiently: The power of randomization. In Proc. 23rd Conf. Econ. Comput. (EC), pages 705-735, 2022. URL: https://doi.org/10.1145/3490486.3538270.
  15. Bolin Ding, Yiding Feng, Chien-Ju Ho, Wei Tang, and Haifeng Xu. Competitive information design for pandora’s box. In Proc. Symp. Discret. Algorithms (SODA), pages 353-381, 2023. URL: https://doi.org/10.1137/1.9781611977554.CH15.
  16. Shaddin Dughmi, Neel Bharatkumar Patel, Aditya Prasad, and Ram Deo-Campo Vuong. On supermodular contracts and dense subgraphs. In Proc. Symp. Discret. Algorithms (SODA), pages 109-132, 2024. URL: https://doi.org/10.1137/1.9781611977912.6.
  17. Paul Dütting, Tomer Ezra, Michal Feldman, and Thomas Kesselheim. Combinatorial contracts. In Proc. Symp. Found. Comput. Sci. (FOCS), pages 815-826, 2021. URL: https://doi.org/10.1109/FOCS52979.2021.00084.
  18. Paul Dütting, Tomer Ezra, Michal Feldman, and Thomas Kesselheim. Multi-agent contracts. In Proc. Symp. Theory Comput. (STOC), pages 1311-1324, 2023. URL: https://doi.org/10.1145/3564246.3585193.
  19. Paul Dütting, Michal Feldman, and Daniel Peretz. Ambiguous contracts. In Proc. 24th Conf. Econ. Comput. (EC), page 539, 2023. Google Scholar
  20. Paul Dütting, Tim Roughgarden, and Inbal Talgam-Cohen. Simple versus optimal contracts. In Proc. 20th Conf. Econ. Comput. (EC), pages 369-387, 2019. URL: https://doi.org/10.1145/3328526.3329591.
  21. Paul Dütting, Tim Roughgarden, and Inbal Talgam-Cohen. The complexity of contracts. SIAM J. Comput., 50(1):211-254, 2021. URL: https://doi.org/10.1137/20M132153X.
  22. Paul Dütting, Michal Feldman, and Yoav Gal Tzur. Combinatorial contracts beyond gross substitutes. In Proc. Symp. Discret. Algorithms (SODA), pages 92-108, 2024. URL: https://doi.org/10.1137/1.9781611977912.5.
  23. Tomer Ezra, Michal Feldman, and Maya Schlesinger. Sequential contracts. CoRR, abs/2403.09545, 2024. URL: https://doi.org/10.48550/arXiv.2403.09545.
  24. Yiding Feng, Wei Tang, and Haifeng Xu. Online Bayesian recommendation with no regret. In Proc. 23rd Conf. Econ. Comput. (EC), pages 818-819, 2022. URL: https://doi.org/10.1145/3490486.3538327.
  25. Hu Fu, Jiawei Li, and Daogao Liu. Pandora box problem with nonobligatory inspection: Hardness and approximation scheme. In Proc. 55th Symp. Theory Comput. (STOC), pages 789-802, 2023. URL: https://doi.org/10.1145/3564246.3585229.
  26. Anupam Gupta, Haotian Jiang, Ziv Scully, and Sahil Singla. The markovian price of information. In Proc. Int. Conf. Integer Prog. and Comb. Opt. (IPCO), pages 233-246, 2019. URL: https://doi.org/10.1007/978-3-030-17953-3_18.
  27. Guru Guruganesh, Jon Schneider, Joshua R. Wang, and Junyao Zhao. The power of menus in contract design. In Proc. 24th Conf. Econ. Comput. (EC), pages 818-848, 2023. URL: https://doi.org/10.1145/3580507.3597735.
  28. Niklas Hahn, Martin Hoefer, and Rann Smorodinsky. Prophet inequalities for Bayesian persuasion. In Proc. Int. Joint Conf. Artif. Intell. (IJCAI), pages 175-181, 2020. URL: https://doi.org/10.24963/IJCAI.2020/25.
  29. Niklas Hahn, Martin Hoefer, and Rann Smorodinsky. The secretary recommendation problem. Games Econ. Behav., 134:199-228, 2022. URL: https://doi.org/10.1016/J.GEB.2022.05.002.
  30. Bengt Holmstrom and Paul Milgrom. Aggregation and linearity in the provision of intertemporal incentives. Econometrica, 55(2):303-328, 1987. Google Scholar
  31. Bengt Holmström. Moral hazard and observability. Bell J. Econ., 10(1):74-91, 1979. Google Scholar
  32. Jon M. Kleinberg and Robert D. Kleinberg. Delegated search approximates efficient search. In Proc. 19th Conf. Econ. Comput. (EC), pages 287-302, 2018. URL: https://doi.org/10.1145/3219166.3219205.
  33. Robert D. Kleinberg, Bo Waggoner, and E. Glen Weyl. Descending price optimally coordinates search. In Proc. 17th Conf. Econ. Comput. (EC), pages 23-24, 2016. URL: https://doi.org/10.1145/2940716.2940760.
  34. P. Postl. Delegated search: Procedure matters. Discussion Paper 04-17, Department of Economics, University of Birmingham, 2004. Google Scholar
  35. Royal Swedish Academy of Sciences. Scientific background on the 2016 nobel prize in economic sciences, 2016. Google Scholar
  36. Eden Saig, Inbal Talgam-Cohen, and Nir Rosenfeld. Delegated classification. In Proc. Conf. Adv. Neural Inf. Processing Syst. (NeurIPS), 2023. Google Scholar
  37. Suho Shin, Keivan Rezaei, and Mohammadtaghi Hajiaghayi. Delegating to multiple agents. In Proc. 24th Conf. Econ. Comput. (EC), pages 1081-1126, 2023. URL: https://doi.org/10.1145/3580507.3597669.
  38. Sahil Singla. The price of information in combinatorial optimization. In Proc. Symp. Discret. Algorithms (SODA), pages 2523-2532, 2018. URL: https://doi.org/10.1137/1.9781611975031.161.
  39. Martin L. Weitzman. Optimal Search for the Best Alternative. Econometrica, May, 47(3):641-654, 1979. Google Scholar
  40. You Zu, Krishnamurthy Iyer, and Haifeng Xu. Learning to persuade on the fly: Robustness against ignorance. In Proc. 22nd Conf. Econ. Comput. (EC), pages 927-928, 2021. URL: https://doi.org/10.1145/3465456.3467593.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail