Protecting the Connectivity of a Graph Under Non-Uniform Edge Failures

Authors Felix Hommelsheim , Zhenwei Liu , Nicole Megow , Guochuan Zhang



PDF
Thumbnail PDF

File

LIPIcs.STACS.2025.51.pdf
  • Filesize: 0.84 MB
  • 21 pages

Document Identifiers

Author Details

Felix Hommelsheim
  • University of Bremen, Germany
Zhenwei Liu
  • Zhejiang University, Hangzhou, China
  • University of Bremen, Germany
Nicole Megow
  • University of Bremen, Germany
Guochuan Zhang
  • Zhejiang University, Hangzhou, China

Cite As Get BibTex

Felix Hommelsheim, Zhenwei Liu, Nicole Megow, and Guochuan Zhang. Protecting the Connectivity of a Graph Under Non-Uniform Edge Failures. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 51:1-51:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.STACS.2025.51

Abstract

We study the problem of guaranteeing the connectivity of a given graph by protecting or strengthening edges. Herein, a protected edge is assumed to be robust and will not fail, which features a non-uniform failure model. We introduce the (p,q)-Steiner-Connectivity Preservation problem where we protect a minimum-cost set of edges such that the underlying graph maintains p-edge-connectivity between given terminal pairs against edge failures, assuming at most q unprotected edges can fail. We design polynomial-time exact algorithms for the cases where p and q are small and approximation algorithms for general values of p and q. Additionally, we show that when both p and q are part of the input, even deciding whether a given solution is feasible is NP-complete. This hardness also carries over to Flexible Network Design, a research direction that has gained significant attention. In particular, previous work focuses on problem settings where either p or q is constant, for which our new hardness result now provides justification.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Combinatorial optimization
  • Theory of computation → Design and analysis of algorithms
Keywords
  • Network Design
  • Edge Failures
  • Graph Connectivity
  • Approximation Algorithms

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Waseem Abbas, Aron Laszka, Yevgeniy Vorobeychik, and Xenofon Koutsoukos. Improving network connectivity using trusted nodes and edges. In 2017 American Control Conference (ACC), pages 328-333. IEEE, 2017. URL: https://doi.org/10.23919/ACC.2017.7962974.
  2. David Adjiashvili, Felix Hommelsheim, and Moritz Mühlenthaler. Flexible graph connectivity. Math. Program., 192(1):409-441, 2022. URL: https://doi.org/10.1007/S10107-021-01664-9.
  3. David Adjiashvili, Felix Hommelsheim, Moritz Mühlenthaler, and Oliver Schaudt. Fault-tolerant edge-disjoint s-t paths - beyond uniform faults. In SWAT, volume 227 of LIPIcs, pages 5:1-5:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPICS.SWAT.2022.5.
  4. David Adjiashvili, Sebastian Stiller, and Rico Zenklusen. Bulk-robust combinatorial optimization. Math. Program., 149(1-2):361-390, 2015. URL: https://doi.org/10.1007/S10107-014-0760-6.
  5. Sepehr Assadi, Ehsan Emamjomeh-Zadeh, Ashkan Norouzi-Fard, Sadra Yazdanbod, and Hamid Zarrabi-Zadeh. The minimum vulnerability problem. Algorithmica, 70(4):718-731, 2014. URL: https://doi.org/10.1007/S00453-014-9927-Z.
  6. Ishan Bansal. A global analysis of the primal-dual method for pliable families, 2024. URL: https://arxiv.org/abs/2308.15714.
  7. Ishan Bansal, Joe Cheriyan, Logan Grout, and Sharat Ibrahimpur. Algorithms for 2-connected network design and flexible steiner trees with a constant number of terminals. In APPROX/RANDOM, volume 275 of LIPIcs, pages 14:1-14:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2023.14.
  8. Ishan Bansal, Joseph Cheriyan, Logan Grout, and Sharat Ibrahimpur. Improved approximation algorithms by generalizing the primal-dual method beyond uncrossable functions. Algorithmica, 86(8):2575-2604, 2024. URL: https://doi.org/10.1007/S00453-024-01235-2.
  9. Ishan Bansal, Joseph Cheriyan, Sanjeev Khanna, and Miles Simmons. Improved approximation algorithms for flexible graph connectivity and capacitated network design, 2024. URL: https://doi.org/10.48550/arXiv.2411.18809.
  10. Reuven Bar-Yehuda and Shimon Even. A linear-time approximation algorithm for the weighted vertex cover problem. J. Algorithms, 2(2):198-203, 1981. URL: https://doi.org/10.1016/0196-6774(81)90020-1.
  11. Marshall W. Bern and Paul E. Plassmann. The steiner problem with edge lengths 1 and 2. Inf. Process. Lett., 32(4):171-176, 1989. URL: https://doi.org/10.1016/0020-0190(89)90039-2.
  12. Daniel Bienstock and Nicole Diaz. Blocking small cuts in a network, and related problems. SIAM J. Comput., 22(3):482-499, 1993. URL: https://doi.org/10.1137/0222034.
  13. Sylvia C. Boyd, Joseph Cheriyan, Arash Haddadan, and Sharat Ibrahimpur. Approximation algorithms for flexible graph connectivity. Math. Program., 204(1):493-516, 2024. URL: https://doi.org/10.1007/S10107-023-01961-5.
  14. Federica Cecchetto, Vera Traub, and Rico Zenklusen. Bridging the gap between tree and connectivity augmentation: unified and stronger approaches. In STOC, pages 370-383. ACM, 2021. URL: https://doi.org/10.1145/3406325.3451086.
  15. Ruoxu Cen, Jason Li, and Debmalya Panigrahi. Edge connectivity augmentation in near-linear time. In STOC, pages 137-150. ACM, 2022. URL: https://doi.org/10.1145/3519935.3520038.
  16. Deeparnab Chakrabarty, Chandra Chekuri, Sanjeev Khanna, and Nitish Korula. Approximability of capacitated network design. Algorithmica, 72(2):493-514, 2015. URL: https://doi.org/10.1007/S00453-013-9862-4.
  17. Chandra Chekuri and Rhea Jain. Approximation algorithms for network design in non-uniform fault models. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. Google Scholar
  18. Chandra Chekuri and Rhea Jain. Approximation algorithms for network design in non-uniform fault models, 2024. https://arxiv.org/abs/2403.15547, URL: https://doi.org/10.48550/arXiv.2403.15547.
  19. Vasek Chvátal. A greedy heuristic for the set-covering problem. Math. Oper. Res., 4(3):233-235, 1979. URL: https://doi.org/10.1287/MOOR.4.3.233.
  20. Efim A. Dinits, Alexander V. Karzanov, and Micael V. Lomonosov. On the structure of a family of minimum weighted cuts in a graph. Studies in Discrete Optimization, pages 209-306, 1976. Google Scholar
  21. Gabriel L Duarte, Hiroshi Eto, Tesshu Hanaka, Yasuaki Kobayashi, Yusuke Kobayashi, Daniel Lokshtanov, Lehilton LC Pedrosa, Rafael CS Schouery, and Uéverton S Souza. Computing the largest bond and the maximum connected cut of a graph. Algorithmica, 83:1421-1458, 2021. URL: https://doi.org/10.1007/S00453-020-00789-1.
  22. Kapali P. Eswaran and Robert Endre Tarjan. Augmentation problems. SIAM J. Comput., 5(4):653-665, 1976. URL: https://doi.org/10.1137/0205044.
  23. Till Fluschnik, Stefan Kratsch, Rolf Niedermeier, and Manuel Sorge. The parameterized complexity of the minimum shared edges problem. J. Comput. Syst. Sci., 106:23-48, 2019. URL: https://doi.org/10.1016/J.JCSS.2018.12.002.
  24. Fedor V. Fomin, Petr A. Golovach, and Janne H. Korhonen. On the parameterized complexity of cutting a few vertices from a graph. In MFCS, volume 8087 of Lecture Notes in Computer Science, pages 421-432. Springer, 2013. URL: https://doi.org/10.1007/978-3-642-40313-2_38.
  25. Greg N. Frederickson and Joseph F. JáJá. Approximation algorithms for several graph augmentation problems. SIAM J. Comput., 10(2):270-283, 1981. URL: https://doi.org/10.1137/0210019.
  26. Harold N. Gabow. Data structures for weighted matching and nearest common ancestors with linking. In SODA, pages 434-443. SIAM, 1990. URL: http://dl.acm.org/citation.cfm?id=320176.320229.
  27. M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979. Google Scholar
  28. Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica, 18(1):3-20, 1997. URL: https://doi.org/10.1007/BF02523685.
  29. Michel X. Goemans, Andrew V. Goldberg, Serge A. Plotkin, David B. Shmoys, Éva Tardos, and David P. Williamson. Improved approximation algorithms for network design problems. In SODA, pages 223-232. ACM/SIAM, 1994. URL: http://dl.acm.org/citation.cfm?id=314464.314497.
  30. Zhongtian He, Shang-En Huang, and Thatchaphol Saranurak. Cactus representation of minimum cuts: Derandomize and speed up. In SODA, pages 1503-1541. SIAM, 2024. URL: https://doi.org/10.1137/1.9781611977912.61.
  31. Dorit S. Hochbaum. Approximation algorithms for the set covering and vertex cover problems. SIAM J. Comput., 11(3):555-556, 1982. URL: https://doi.org/10.1137/0211045.
  32. Kamal Jain. A factor 2 approximation algorithm for the generalized steiner network problem. Comb., 21(1):39-60, 2001. URL: https://doi.org/10.1007/S004930170004.
  33. David R. Karger. Global min-cuts in RNC, and other ramifications of a simple min-cut algorithm. In SODA, pages 21-30. ACM/SIAM, 1993. URL: http://dl.acm.org/citation.cfm?id=313559.313605.
  34. Guy Kortsarz, Robert Krauthgamer, and James R. Lee. Hardness of approximation for vertex-connectivity network design problems. SIAM J. Comput., 33(3):704-720, 2004. URL: https://doi.org/10.1137/S0097539702416736.
  35. Hiroshi Nagamochi and Toshihide Ibaraki. Algorithmic Aspects of Graph Connectivity, volume 123 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2008. URL: https://doi.org/10.1017/CBO9780511721649.
  36. Hiroshi Nagamochi, Kazuhiro Nishimura, and Toshihide Ibaraki. Computing all small cuts in an undirected network. SIAM J. Discret. Math., 10(3):469-481, 1997. URL: https://doi.org/10.1137/S0895480194271323.
  37. Zeev Nutov. Improved approximation ratio for covering pliable set families, 2024. https://arxiv.org/abs/2404.00683, URL: https://doi.org/10.48550/arXiv.2404.00683.
  38. Masoud T. Omran, Jörg-Rüdiger Sack, and Hamid Zarrabi-Zadeh. Finding paths with minimum shared edges. J. Comb. Optim., 26(4):709-722, 2013. URL: https://doi.org/10.1007/S10878-012-9462-2.
  39. David Pritchard. k-edge-connectivity: Approximation and LP relaxation. In WAOA, volume 6534 of Lecture Notes in Computer Science, pages 225-236. Springer, 2010. URL: https://doi.org/10.1007/978-3-642-18318-8_20.
  40. Vera Traub and Rico Zenklusen. A better-than-2 approximation for weighted tree augmentation. In FOCS, pages 1-12. IEEE, 2021. URL: https://doi.org/10.1109/FOCS52979.2021.00010.
  41. Vera Traub and Rico Zenklusen. Local search for weighted tree augmentation and steiner tree. In SODA, pages 3253-3272. SIAM, 2022. URL: https://doi.org/10.1137/1.9781611977073.128.
  42. Vera Traub and Rico Zenklusen. A (1.5+ε)-approximation algorithm for weighted connectivity augmentation. In STOC, pages 1820-1833. ACM, 2023. URL: https://doi.org/10.1145/3564246.3585122.
  43. David P. Williamson, Michel X. Goemans, Milena Mihail, and Vijay V. Vazirani. A primal-dual approximation algorithm for generalized steiner network problems. Comb., 15(3):435-454, 1995. URL: https://doi.org/10.1007/BF01299747.
  44. Jianan Zhang, Eytan Modiano, and David Hay. Enhancing network robustness via shielding. IEEE/ACM Transactions on Networking, 25(4):2209-2222, 2017. URL: https://doi.org/10.1109/TNET.2017.2689019.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail