LIPIcs.STACS.2025.51.pdf
- Filesize: 0.84 MB
- 21 pages
We study the problem of guaranteeing the connectivity of a given graph by protecting or strengthening edges. Herein, a protected edge is assumed to be robust and will not fail, which features a non-uniform failure model. We introduce the (p,q)-Steiner-Connectivity Preservation problem where we protect a minimum-cost set of edges such that the underlying graph maintains p-edge-connectivity between given terminal pairs against edge failures, assuming at most q unprotected edges can fail. We design polynomial-time exact algorithms for the cases where p and q are small and approximation algorithms for general values of p and q. Additionally, we show that when both p and q are part of the input, even deciding whether a given solution is feasible is NP-complete. This hardness also carries over to Flexible Network Design, a research direction that has gained significant attention. In particular, previous work focuses on problem settings where either p or q is constant, for which our new hardness result now provides justification.
Feedback for Dagstuhl Publishing