On Read-k Projections of the Determinant

Authors Pavel Hrubeš , Pushkar S. Joglekar



PDF
Thumbnail PDF

File

LIPIcs.STACS.2025.53.pdf
  • Filesize: 0.63 MB
  • 7 pages

Document Identifiers

Author Details

Pavel Hrubeš
  • Institute of Mathematics of ASCR, Czech Republic
Pushkar S. Joglekar
  • Vishwakarma Institute of Technology, Pune, India

Cite As Get BibTex

Pavel Hrubeš and Pushkar S. Joglekar. On Read-k Projections of the Determinant. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 53:1-53:7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.STACS.2025.53

Abstract

We consider read-k determinantal representations of polynomials and prove some non-expressibility results. A square matrix M whose entries are variables or field elements will be called read-k, if every variable occurs at most k times in M. It will be called a determinantal representation of a polynomial f if f = det(M). We show that  
- the n × n permanent polynomial does not have a read-k determinantal representation for k ∈ o(√n/log n) (over a field of characteristic different from two).  We also obtain a quantitative strengthening of this result by giving a similar non-expressibility for k ∈ o(√n/log n) for an explicit n-variate multilinear polynomial (as opposed to the permanent which is n²-variate).

Subject Classification

ACM Subject Classification
  • Theory of computation → Algebraic complexity theory
Keywords
  • determinant
  • permanent
  • projection of determinant
  • VNP completeness of permanent

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Manindra Agrawal. Determinant versus permanent. Proceedings of the International Congress of Mathematicians, 3:985-998, July 2008. Google Scholar
  2. N. R. Aravind and P. S. Joglekar. On the expressive power of read-once determinants. In Fundamentals of Computation Theory - 20th International Symposium, volume 9210 of Lecture Notes in Computer Science, pages 95-105. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-22177-9_8.
  3. P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity theory, volume 315 of Grundlehren der mathematischen Wissenschaften. Springer, 1997. Google Scholar
  4. J. Cai, X. Chen, and D. Li. A quadratic lower bound for the permanent and determinant problem over any characteristic ̸ = 2. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pages 491-498, 2008. URL: https://doi.org/10.1145/1374376.1374446.
  5. Ch. Ikenmeyer and J. M. Landsberg. On the complexity of the permanent in various computational models. CoRR, abs/1610.00159, 2016. URL: https://arxiv.org/abs/1610.00159.
  6. K. Kalorkoti. A lower bound for the formula size of rational functions. SIAM J. Comput., 14(3):678-687, 1985. URL: https://doi.org/10.1137/0214050.
  7. T. Mignon and N. Ressayre. A quadratic bound for the determinant and permanent problem. International Mathematics Research Notices, pages 4241-4253, 2004. Google Scholar
  8. E. I. Nechiporuk. On a boolean function. Soviet Math. Dokl., 7(4):999-1000, 1966. Google Scholar
  9. G. Pólya. Aufgabe 424. Arch. Math. Phys., 20(271), 1913. Google Scholar
  10. Leslie G. Valiant. Completeness classes in algebra. In Proceedings of the 11h Annual ACM Symposium on Theory of Computing,, pages 249-261. ACM, 1979. URL: https://doi.org/10.1145/800135.804419.
  11. Joachim von zur Gathen. Feasible arithmetic computations: Valiant’s hypothesis. J. Symb. Comput., 4(2):137-172, 1987. URL: https://doi.org/10.1016/S0747-7171(87)80063-9.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail