Violating Constant Degree Hypothesis Requires Breaking Symmetry

Authors Piotr Kawałek , Armin Weiß



PDF
Thumbnail PDF

File

LIPIcs.STACS.2025.58.pdf
  • Filesize: 0.85 MB
  • 21 pages

Document Identifiers

Author Details

Piotr Kawałek
  • TU Wien, Austria
  • Jagiellonian University in Kraków, Poland
Armin Weiß
  • University of Stuttgart, Germany

Cite As Get BibTex

Piotr Kawałek and Armin Weiß. Violating Constant Degree Hypothesis Requires Breaking Symmetry. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 58:1-58:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.STACS.2025.58

Abstract

The Constant Degree Hypothesis was introduced by Barrington et. al. [David A. Mix Barrington et al., 1990] to study some extensions of q-groups by nilpotent groups and the power of these groups in a computation model called NuDFA (non-uniform DFA). In its simplest formulation, it establishes exponential lower bounds for MOD_q∘MOD_m∘AND_d circuits computing AND of unbounded arity n (for constant integers d,m and a prime q). While it has been proved in some special cases (including d = 1), it remains wide open in its general form for over 30 years. 
In this paper we prove that the hypothesis holds when we restrict our attention to symmetric circuits with m being a prime. While we build upon techniques by Grolmusz and Tardos [Vince Grolmusz and Gábor Tardos, 2000], we have to prove a new symmetric version of their Degree Decreasing Lemma and use it to simplify circuits in a symmetry-preserving way. Moreover, to establish the result, we perform a careful analysis of automorphism groups of MOD_m∘AND_d subcircuits and study the periodic behaviour of the computed functions. Our methods also yield lower bounds when d is treated as a function of n.
Finally, we present a construction of symmetric MOD_q∘MOD_m∘AND_d circuits that almost matches our lower bound and conclude that a symmetric function f can be computed by symmetric MOD_q∘MOD_p∘AND_d circuits of quasipolynomial size if and only if f has periods of polylogarithmic length of the form p^k q^𝓁.

Subject Classification

ACM Subject Classification
  • Theory of computation → Circuit complexity
  • Theory of computation → Complexity classes
Keywords
  • Circuit lower bounds
  • constant degree hypothesis
  • permutation groups
  • CC⁰-circuits

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Miklós Ajtai. Σ₁¹-formulae on finite structures. Annals of Pure and Applied Logic, 24(1):1-48, 1983. URL: https://doi.org/10.1016/0168-0072(83)90038-6.
  2. László Babai. Primitive coherent configurations and the order of uniprimitive permutation groups, 2018. URL: https://people.cs.uchicago.edu/~laci/papers/uni-update.pdf.
  3. David A. Mix Barrington, Richard Beigel, and Steven Rudich. Representing Boolean functions as polynomials modulo composite numbers. Computational Complexity, 4:367-382, 1994. URL: https://doi.org/10.1007/BF01263424.
  4. David A. Mix Barrington and Howard Straubing. Complex polynomials and circuit lower bounds for modular counting. Computational Complexity, 4:325-338, 1994. URL: https://doi.org/10.1007/BF01263421.
  5. David A. Mix Barrington, Howard Straubing, and Denis Thérien. Non-uniform automata over groups. Information and Computation, 89(2):109-132, 1990. URL: https://doi.org/10.1016/0890-5401(90)90007-5.
  6. Abhishek Bhrushundi, Kaave Hosseini, Shachar Lovett, and Sankeerth Rao. Torus polynomials: An algebraic approach to ACC lower bounds. In 10th Innovations in Theoretical Computer Science Conference, ITCS 2019, volume 124 of LIPIcs, pages 13:1-13:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.ITCS.2019.13.
  7. Alfred Bochert. Ueber die Zahl der verschiedenen Werthe, die eine Function gegebener Buchstaben durch Vertauschung derselben erlangen kann. Mathematische Annalen, 33(4):584-590, 1889. URL: https://doi.org/10.1007/BF01444035.
  8. Joshua Brakensiek, Sivakanth Gopi, and Venkatesan Guruswami. Constraint satisfaction problems with global modular constraints: Algorithms and hardness via polynomial representations. SIAM Journal on Computing, 51(3):577-626, 2022. URL: https://doi.org/10.1137/19m1291054.
  9. Bettina Brustmann and Ingo Wegener. The complexity of symmetric functions in bounded-depth circuits. Information Processing Letters, 25(4):217-219, 1987. URL: https://doi.org/10.1016/0020-0190(87)90163-3.
  10. Peter J. Cameron. Permutation Groups. London Mathematical Society Student Texts. Cambridge University Press, 1999. URL: https://doi.org/10.1017/CBO9780511623677.
  11. Brynmor Chapman and Ryan Williams. Smaller ACC⁰ circuits for symmetric functions. In 13th Innovations in Theoretical Computer Science Conference, ITCS 2022, volume 215 of LIPIcs, pages 38:1-38:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.ITCS.2022.38.
  12. Arkadev Chattopadhyay, Navin Goyal, Pavel Pudlak, and Denis Therien. Lower bounds for circuits with MOD_m gates. In 47th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2006, pages 709-718, 2006. URL: https://doi.org/10.1109/FOCS.2006.46.
  13. Anuj Dawar and Gregory Wilsenach. Symmetric arithmetic circuits. In 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, volume 168 of LIPIcs, pages 36:1-36:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.ICALP.2020.36.
  14. Larry Denenberg, Yuri Gurevich, and Saharon Shelah. Definability by constant-depth polynomial-size circuits. Information and Control, 70(2/3):216-240, 1986. URL: https://doi.org/10.1016/S0019-9958(86)80006-7.
  15. Zeev Dvir, Parikshit Gopalan, and Sergey Yekhanin. Matching vector codes. SIAM Journal on Computing, 40(4):1154-1178, 2011. URL: https://doi.org/10.1137/100804322.
  16. Zeev Dvir and Sivakanth Gopi. 2-server PIR with sub-polynomial communication. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, pages 577-584. ACM, 2015. URL: https://doi.org/10.1145/2746539.2746546.
  17. Klim Efremenko. 3-query locally decodable codes of subexponential length. SIAM Journal on Computing, 41(6):1694-1703, 2012. URL: https://doi.org/10.1137/090772721.
  18. Ronald Fagin, Maria M. Klawe, Nicholas Pippenger, and Larry J. Stockmeyer. Bounded-depth, polynomial-size circuits for symmetric functions. Theoretical Computer Science, 36:239-250, 1985. URL: https://doi.org/10.1016/0304-3975(85)90045-3.
  19. Merrick Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time hierarchy. Mathematical systems theory, 17:13-27, 1984. URL: https://doi.org/10.1007/BF01744431.
  20. Parikshit Gopalan. Constructing Ramsey graphs from Boolean function representations. Combinatorica, 34:173-206, 2014. URL: https://doi.org/10.1007/s00493-014-2367-1.
  21. Vince Grolmusz. Superpolynomial size set-systems with restricted intersections mod 6 and explicit Ramsey graphs. Combinatorica, 20(1):71-86, 2000. URL: https://doi.org/10.1007/s004930070032.
  22. Vince Grolmusz. A degree-decreasing lemma for (MOD_p-MOD_m) circuits. Discrete Mathematics and Theoretical Computer Science, 4(2):247-254, 2001. URL: https://doi.org/10.46298/dmtcs.289.
  23. Vince Grolmusz and Gábor Tardos. Lower bounds for (MOD_p-MOD_m) circuits. SIAM Journal on Computing, 29(4):1209-1222, 2000. URL: https://doi.org/10.1137/S0097539798340850.
  24. Kristoffer Arnsfelt Hansen. Computing symmetric boolean functions by circuits with few exact threshold gates. In Computing and Combinatorics, 13th Annual International Conference, COCOON 2007, Proceedings, volume 4598 of Lecture Notes in Computer Science, pages 448-458. Springer, 2007. URL: https://doi.org/10.1007/978-3-540-73545-8_44.
  25. Kristoffer Arnsfelt Hansen and Michal Koucký. A new characterization of ACC⁰ and probabilistic CC⁰. Computational Complexity, 19(2):211-234, 2010. URL: https://doi.org/10.1007/s00037-010-0287-z.
  26. Johan Håstad. Computational limitations for small depth circuits. PhD thesis, Massachusetts Institute of Technology, 1986. Google Scholar
  27. William He and Benjamin Rossman. Symmetric formulas for products of permutations. In 14th Innovations in Theoretical Computer Science Conference, ITCS 2023, volume 251 of LIPIcs, pages 68:1-68:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.ITCS.2023.68.
  28. Paweł M. Idziak, Piotr Kawałek, and Jacek Krzaczkowski. Intermediate problems in modular circuits satisfiability. In Proceedings of 35th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2020, pages 578-590, 2020. URL: https://doi.org/10.1145/3373718.3394780.
  29. Pawel M. Idziak, Piotr Kawalek, and Jacek Krzaczkowski. Complexity of modular circuits. In Proceedings of 37th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2022, pages 32:1-32:11, 2022. URL: https://doi.org/10.1145/3531130.3533350.
  30. Paweł M. Idziak, Piotr Kawałek, Jacek Krzaczkowski, and Armin Weiß. Satisfiability Problems for Finite Groups. In 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, volume 229 of LIPIcs, pages 127:1-127:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.ICALP.2022.127.
  31. Pawel M. Idziak and Jacek Krzaczkowski. Satisfiability in multivalued circuits. SIAM Journal on Computing, 51(3):337-378, 2022. URL: https://doi.org/10.1137/18m1220194.
  32. Piotr Kawalek and Armin Weiß. Violating constant degree hypothesis requires breaking symmetry. CoRR, abs/2311.17440, 2023. URL: https://doi.org/10.48550/arXiv.2311.17440.
  33. Tianren Liu and Vinod Vaikuntanathan. Breaking the circuit-size barrier in secret sharing. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, pages 699-708, 2018. URL: https://doi.org/10.1145/3188745.3188936.
  34. Chi-Jen Lu. An exact characterization of symmetric functions in qAC^0[2]. Theoretical Computer Science, 261(2):297-303, 2001. URL: https://doi.org/10.1016/S0304-3975(00)00145-6.
  35. Cheryl E. Praeger and Jan Saxl. On the orders of primitive permutation groups. The Bulletin of the London Mathematical Society, 12(4):303-307, 1980. URL: https://doi.org/10.1112/blms/12.4.303.
  36. Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit complexity. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, STOC 1987, pages 77-82. ACM, 1987. URL: https://doi.org/10.1145/28395.28404.
  37. Howard Straubing and Denis Thérien. A note on MOD_p-MOD_m circuits. Theory of Computing Systems, 39(5):699-706, 2006. Google Scholar
  38. Andrew Chi-Chih Yao. Separating the polynomial-time hierarchy by oracles (preliminary version). In 26th Annual Symposium on Foundations of Computer Science, FOCS 1985, pages 1-10. IEEE Computer Society, 1985. URL: https://doi.org/10.1109/SFCS.1985.49.
  39. Zhi-Li Zhang, David A. Mix Barrington, and Jun Tarui. Computing symmetric functions with AND/OR circuits and a single MAJORITY gate. In Proceedings of 10th Annual Symposium on Theoretical Aspects of Computer Science, STACS 1993, volume 665 of Lecture Notes in Computer Science, pages 535-544. Springer, 1993. URL: https://doi.org/10.1007/3-540-56503-5_53.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail