LIPIcs.STACS.2025.58.pdf
- Filesize: 0.85 MB
- 21 pages
The Constant Degree Hypothesis was introduced by Barrington et. al. [David A. Mix Barrington et al., 1990] to study some extensions of q-groups by nilpotent groups and the power of these groups in a computation model called NuDFA (non-uniform DFA). In its simplest formulation, it establishes exponential lower bounds for MOD_q∘MOD_m∘AND_d circuits computing AND of unbounded arity n (for constant integers d,m and a prime q). While it has been proved in some special cases (including d = 1), it remains wide open in its general form for over 30 years. In this paper we prove that the hypothesis holds when we restrict our attention to symmetric circuits with m being a prime. While we build upon techniques by Grolmusz and Tardos [Vince Grolmusz and Gábor Tardos, 2000], we have to prove a new symmetric version of their Degree Decreasing Lemma and use it to simplify circuits in a symmetry-preserving way. Moreover, to establish the result, we perform a careful analysis of automorphism groups of MOD_m∘AND_d subcircuits and study the periodic behaviour of the computed functions. Our methods also yield lower bounds when d is treated as a function of n. Finally, we present a construction of symmetric MOD_q∘MOD_m∘AND_d circuits that almost matches our lower bound and conclude that a symmetric function f can be computed by symmetric MOD_q∘MOD_p∘AND_d circuits of quasipolynomial size if and only if f has periods of polylogarithmic length of the form p^k q^𝓁.
Feedback for Dagstuhl Publishing