Commutative ℕ-Rational Series of Polynomial Growth

Author Aliaume Lopez



PDF
Thumbnail PDF

File

LIPIcs.STACS.2025.67.pdf
  • Filesize: 0.9 MB
  • 16 pages

Document Identifiers

Author Details

Aliaume Lopez
  • University of Warsaw, Poland

Cite As Get BibTex

Aliaume Lopez. Commutative ℕ-Rational Series of Polynomial Growth. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 67:1-67:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.STACS.2025.67

Abstract

This paper studies which functions computed by ℤ-weighted automata can be realised by ℕ-weighted automata, under two extra assumptions: commutativity (the order of letters in the input does not matter) and polynomial growth (the output of the function is bounded by a polynomial in the size of the input). We leverage this effective characterization to decide whether a function computed by a commutative ℕ-weighted automaton of polynomial growth is star-free, a notion borrowed from the theory of regular languages that has been the subject of many investigations in the context of string-to-string functions during the last decade.

Subject Classification

ACM Subject Classification
  • Theory of computation → Quantitative automata
  • Theory of computation → Transducers
Keywords
  • Rational series
  • weighted automata
  • polyregular function
  • commutative

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Jean Berstel and Christophe Reutenauer. Noncommutative rational series with applications, volume 137 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2010. URL: https://doi.org/10.1017/CBO9780511760860.
  2. Mikołaj Bojańczyk. Polyregular functions, 2018. URL: https://arxiv.org/abs/1810.08760.
  3. Mikołaj Bojańczyk, Sandra Kiefer, and Nathan Lhote. String-to-String Interpretations With Polynomial-Size Output. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019), volume 132 of Leibniz International Proceedings in Informatics (LIPIcs), pages 106:1-106:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ICALP.2019.106.
  4. Paul-Jean Cahen and Jean-Luc Chabert. Integer-Valued Polynomials. American Mathematical Society, December 1996. URL: https://doi.org/10.1090/surv/048.
  5. Thomas Colcombet, Gaëtan Douéneau-Tabot, and Aliaume Lopez. Z-polyregular functions. In 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1-13, Los Alamitos, CA, USA, June 2023. IEEE Computer Society. URL: https://doi.org/10.1109/LICS56636.2023.10175685.
  6. Gaëtan Douéneau-Tabot. Pebble Transducers with Unary Output. In Filippo Bonchi and Simon J. Puglisi, editors, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021), volume 202 of Leibniz International Proceedings in Informatics (LIPIcs), pages 40:1-40:17, Dagstuhl, Germany, 2021. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.MFCS.2021.40.
  7. Gaëtan Douéneau-Tabot. Hiding Pebbles When the Output Alphabet Is Unary. In Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022), volume 229 of Leibniz International Proceedings in Informatics (LIPIcs), pages 120:1-120:17, Dagstuhl, Germany, 2022. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ICALP.2022.120.
  8. Gaëtan Douéneau-Tabot. Optimization of string transducers. PhD thesis, Université Paris Cité, 2023. URL: https://gdoueneau.github.io/pages/DOUENEAU- TABOT_Optimization-transducers_v2.pdf.
  9. David Hilbert. Mathematical problems. Bulletin of the American Mathematical Society, 8(10):437-479, 1902. URL: https://doi.org/10.1090/s0002-9904-1902-00923-3.
  10. Juhani Karhumäki. Remarks on commutative N-rational series. Theoretical Computer Science, 5(2):211-217, 1977. URL: https://doi.org/10.1016/0304-3975(77)90008-1.
  11. Aliaume Lopez. Commutative n-polyregular functions, 2024. URL: https://doi.org/10.48550/arXiv.2404.02232.
  12. Yuri Vladimirovich Matiyasevich. The diophantineness of enumerable sets. Doklady Akademii Nauk SSSR, 191:279-282, 1970. in Russian. Google Scholar
  13. Robert McNaughton and Seymour A. Papert. Counter-Free Automata. The MIT Press, 1971. URL: https://doi.org/10.5555/1097043.
  14. G. Pólya. Über ganzwertige ganze Funktionen. Rend. Circ. Mat. Palermo, 40:1-16, 1915. URL: https://doi.org/10.1007/BF03014836.
  15. Marcel P. Schützenberger. Finite counting automata. Information and control, 5(2):91-107, 1962. URL: https://doi.org/10.1016/S0019-9958(62)90244-9.
  16. Marcel P. Schützenberger. On finite monoids having only trivial subgroups. Information and Control, 8(2):190-194, 1965. URL: https://doi.org/10.1016/S0019-9958(65)90108-7.
  17. Wolfgang Thomas. Languages, automata, and logic. In Grzegorz Rozenberg and Arto Salomaa, editors, Handbook of formal languages, pages 389-455. Springer, 1997. URL: https://doi.org/10.1007/978-3-642-59136-5.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail