Unfairly Splitting Separable Necklaces

Authors Patrick Schnider , Linus Stalder, Simon Weber



PDF
Thumbnail PDF

File

LIPIcs.STACS.2025.71.pdf
  • Filesize: 0.88 MB
  • 19 pages

Document Identifiers

Author Details

Patrick Schnider
  • Department of Computer Science, ETH Zürich, Switzerland
Linus Stalder
  • Department of Computer Science, ETH Zürich, Switzerland
Simon Weber
  • Department of Computer Science, ETH Zürich, Switzerland

Cite As Get BibTex

Patrick Schnider, Linus Stalder, and Simon Weber. Unfairly Splitting Separable Necklaces. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 71:1-71:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.STACS.2025.71

Abstract

The Necklace Splitting problem is a classical problem in combinatorics that has been intensively studied both from a combinatorial and a computational point of view. It is well-known that the Necklace Splitting problem reduces to the discrete Ham Sandwich problem. This reduction was crucial in the proof of PPA-completeness of the Ham Sandwich problem. Recently, Borzechowski, Schnider and Weber [ISAAC'23] introduced a variant of Necklace Splitting that similarly reduces to the α-Ham Sandwich problem, which lies in the complexity class UEOPL but is not known to be complete. To make this reduction work, the input necklace is guaranteed to be n-separable. They showed that these necklaces can be fairly split in polynomial time and thus this subproblem cannot be used to prove UEOPL-hardness for α-Ham Sandwich. We consider the more general unfair necklace splitting problem on n-separable necklaces, i.e., the problem of splitting these necklaces such that each thief gets a desired fraction of each type of jewels. This more general problem is the natural necklace-splitting-type version of α-Ham Sandwich, and its complexity status is one of the main open questions posed by Borzechowski, Schnider and Weber. We show that the unfair splitting problem is also polynomial-time solvable, and can thus also not be used to show UEOPL-hardness for α-Ham Sandwich.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Combinatoric problems
  • Theory of computation → Computational geometry
Keywords
  • Necklace splitting
  • n-separability
  • well-separation
  • Ham Sandwich
  • alpha-Ham Sandwich
  • unfair splitting
  • fair division

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Noga Alon. Splitting necklaces. Advances in Mathematics, 63(3):247-253, 1987. URL: https://doi.org/10.1016/0001-8708(87)90055-7.
  2. Noga Alon and Douglas B. West. The Borsuk-Ulam theorem and bisection of necklaces. In Proceedings of the American Mathematical Society, volume 98, pages 623-628. American Mathematical Society, 1986. URL: https://doi.org/10.1090/S0002-9939-1986-0861764-9.
  3. Helena Bergold, Daniel Bertschinger, Nicolas Grelier, Wolfgang Mulzer, and Patrick Schnider. Well-Separation and Hyperplane Transversals in High Dimensions. In Artur Czumaj and Qin Xin, editors, 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022), volume 227 of Leibniz International Proceedings in Informatics (LIPIcs), pages 16:1-16:14, Dagstuhl, Germany, 2022. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.SWAT.2022.16.
  4. Paul Bonsma, Thomas Epping, and Winfried Hochstättler. Complexity results on restricted instances of a paint shop problem for words. Discrete Applied Mathematics, 154(9):1335-1343, 2006. 2nd Cologne/Twente Workshop on Graphs and Combinatorial Optimization (CTW 2003). URL: https://doi.org/10.1016/j.dam.2005.05.033.
  5. Michaela Borzechowski, John Fearnley, Spencer Gordon, Rahul Savani, Patrick Schnider, and Simon Weber. Two Choices Are Enough for P-LCPs, USOs, and Colorful Tangents. In Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson, editors, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024), volume 297 of Leibniz International Proceedings in Informatics (LIPIcs), pages 32:1-32:18, Dagstuhl, Germany, 2024. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ICALP.2024.32.
  6. Michaela Borzechowski, Patrick Schnider, and Simon Weber. An FPT Algorithm for Splitting a Necklace Among Two Thieves. In Satoru Iwata and Naonori Kakimura, editors, 34th International Symposium on Algorithms and Computation (ISAAC 2023), volume 283 of Leibniz International Proceedings in Informatics (LIPIcs), pages 15:1-15:14, Dagstuhl, Germany, 2023. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ISAAC.2023.15.
  7. Steven J. Brams and Alan D. Taylor. An Envy-Free Cake Division Protocol. The American Mathematical Monthly, 102(1):9-18, 1995. URL: https://doi.org/10.1080/00029890.1995.11990526.
  8. Man-Kwun Chiu, Aruni Choudhary, and Wolfgang Mulzer. Computational Complexity of the α-Ham-Sandwich Problem. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020), volume 168 of Leibniz International Proceedings in Informatics (LIPIcs), pages 31:1-31:18, Dagstuhl, Germany, 2020. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ICALP.2020.31.
  9. Jesús De Loera, Xavier Goaoc, Frédéric Meunier, and Nabil Mustafa. The discrete yet ubiquitous theorems of Carathéodory, Helly, Sperner, Tucker, and Tverberg. Bulletin of the American Mathematical Society, 56(3):415-511, 2019. URL: https://doi.org/10.1090/bull/1653.
  10. Xiaotie Deng, Qi Qi, and Amin Saberi. Algorithmic solutions for envy-free cake cutting. Operations Research, 60(6):1461-1476, 2012. URL: https://doi.org/10.1287/opre.1120.1116.
  11. Thomas Epping, Winfried Hochstättler, and Peter Oertel. Complexity results on a paint shop problem. Discrete Applied Mathematics, 136(2):217-226, 2004. The 1st Cologne-Twente Workshop on Graphs and Combinatorial Optimization. URL: https://doi.org/10.1016/S0166-218X(03)00442-6.
  12. Aris Filos-Ratsikas and Paul W. Goldberg. The complexity of splitting necklaces and bisecting ham sandwiches. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, pages 638-649, New York, NY, USA, 2019. Association for Computing Machinery. URL: https://doi.org/10.1145/3313276.3316334.
  13. Charles H. Goldberg and Douglas B. West. Bisection of circle colorings. SIAM Journal on Algebraic Discrete Methods, 6(1):93-106, 1985. URL: https://doi.org/10.1137/0606010.
  14. Charles R. Hobby and John R. Rice. A moment problem in L1 approximation. Proceedings of the American Mathematical Society, 16(4):665-670, 1965. URL: https://doi.org/10.2307/2033900.
  15. Bart M. P. Jansen and Stefan Kratsch. A structural approach to kernels for ILPs: Treewidth and total unimodularity. In Nikhil Bansal and Irene Finocchi, editors, Algorithms - ESA 2015, pages 779-791. Springer Berlin Heidelberg, 2015. URL: https://doi.org/10.1007/978-3-662-48350-3_65.
  16. Jiří Matoušek. Lectures on Discrete Geometry. Graduate Texts in Mathematics. Springer New York, 2002. URL: https://doi.org/10.1007/978-1-4613-0039-7.
  17. Frédéric Meunier and András Sebő. Paintshop, odd cycles and necklace splitting. Discrete Applied Mathematics, 157(4):780-793, 2009. URL: https://doi.org/10.1016/j.dam.2008.06.017.
  18. Svatopluk Poljak and Daniel Turzík. A polynomial time heuristic for certain subgraph optimization problems with guaranteed worst case bound. Discrete Mathematics, 58(1):99-104, 1986. URL: https://doi.org/10.1016/0012-365X(86)90192-5.
  19. Sambuddha Roy and William Steiger. Some combinatorial and algorithmic applications of the Borsuk-Ulam theorem. Graphs and Combinatorics, 23(1):331-341, June 2007. URL: https://doi.org/10.1007/s00373-007-0716-1.
  20. Erel Segal-Halevi, Shmuel Nitzan, Avinatan Hassidim, and Yonatan Aumann. Envy-free division of land. Mathematics of Operations Research, 45(3):896-922, 2020. URL: https://doi.org/10.1287/moor.2019.1016.
  21. Forest W. Simmons and Francis Edward Su. Consensus-halving via theorems of Borsuk-Ulam and Tucker. Mathematical Social Sciences, 45(1):15-25, 2003. URL: https://doi.org/10.1016/S0165-4896(02)00087-2.
  22. William Steiger and Jihui Zhao. Generalized ham-sandwich cuts. Discrete & Computational Geometry, 44(3):535-545, 2010. URL: https://doi.org/10.1007/s00454-009-9225-8.
  23. Arthur H. Stone and John W. Tukey. Generalized "sandwich" theorems. Duke Math. J., 9(2):356-359, 1942. URL: https://doi.org/10.1215/S0012-7094-42-00925-6.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail