Canonical Labeling of Sparse Random Graphs

Authors Oleg Verbitsky , Maksim Zhukovskii



PDF
Thumbnail PDF

File

LIPIcs.STACS.2025.75.pdf
  • Filesize: 0.81 MB
  • 20 pages

Document Identifiers

Author Details

Oleg Verbitsky
  • Institut für Informatik, Humboldt-Universität zu Berlin, Germany
Maksim Zhukovskii
  • School of Computer Science, University of Sheffield, UK

Acknowledgements

The authors would like to thank Michael Krivelevich for helpful discussions.

Cite As Get BibTex

Oleg Verbitsky and Maksim Zhukovskii. Canonical Labeling of Sparse Random Graphs. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 75:1-75:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.STACS.2025.75

Abstract

We show that if p = O(1/n), then the Erdős-Rényi random graph G(n,p) with high probability admits a canonical labeling computable in time O(nlog n). Combined with the previous results on the canonization of random graphs, this implies that G(n,p) with high probability admits a polynomial-time canonical labeling whatever the edge probability function p. Our algorithm combines the standard color refinement routine with simple post-processing based on the classical linear-time tree canonization. Noteworthy, our analysis of how well color refinement performs in this setting allows us to complete the description of the automorphism group of the 2-core of G(n,p).

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Random graphs
  • Mathematics of computing → Graph algorithms
Keywords
  • Graph isomorphism
  • random graphs
  • canonical labeling
  • color refinement

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullmann. The Design and Analysis of Computer Algorithms. Addison-Wesley Longman Publishing Co., 1974. Google Scholar
  2. Michael Anastos, Matthew Kwan, and Benjamin Moore. Smoothed analysis for graph isomorphism, 2024. URL: https://arxiv.org/abs/2410.06095.
  3. D. Angluin. Local and global properties in networks of processors. In The 12th Annual ACM Symposium on Theory of Computing, pages 82-93, 1980. Google Scholar
  4. Vikraman Arvind, Johannes Köbler, Gaurav Rattan, and Oleg Verbitsky. Graph isomorphism, color refinement, and compactness. Comput. Complex., 26(3):627-685, 2017. URL: https://doi.org/10.1007/s00037-016-0147-6.
  5. L. Babai, P. Erdős, and S. M. Selkow. Random graph isomorphism. SIAM Journal on Computing, 9(3):628-635, 1980. URL: https://doi.org/10.1137/0209047.
  6. László Babai. Moderately exponential bound for Graph Isomorphism. In Proc. of the 3rd Int. Conf. on Fundamentals of Computation Theory (FCT'81), volume 117 of Lecture Notes in Computer Science, pages 34-50. Springer, 1981. URL: https://doi.org/10.1007/3-540-10854-8_4.
  7. László Babai. Graph isomorphism in quasipolynomial time. In Proceedings of the forty-eighth annual ACM symposium on Theory of Computing (STOC'16), pages 684-697, 2016. URL: https://doi.org/10.1145/2897518.2897542.
  8. László Babai. Canonical form for graphs in quasipolynomial time: preliminary report. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (STOC'19), pages 1237-1246, 2019. URL: https://doi.org/10.1145/3313276.3316356.
  9. Cristoph Berkholz, Paul Bonsma, and Martin Grohe. Tight lower and upper bounds for the complexity of canonical colour refinement. Theory of Computing Systems, 60:581-614, 2017. URL: https://doi.org/10.1007/S00224-016-9686-0.
  10. N. Biggs. Algebraic graph theory. Cambridge University Press, 2nd edition, 1994. Google Scholar
  11. Tom Bohman, Alan M. Frieze, Tomasz Luczak, Oleg Pikhurko, Clifford D. Smyth, Joel Spencer, and Oleg Verbitsky. First-order definability of trees and sparse random graphs. Comb. Probab. Comput., 16(3):375-400, 2007. URL: https://doi.org/10.1017/S0963548306008376.
  12. Bela Bollobás. Distinguishing vertices of random graphs. Ann. Discrete Math., 13:33-50, 1982. Google Scholar
  13. Bela Bollobás. The evolution of random graphs. Transactions of the American Mathematical Society, 286(1):257-274, 1984. Google Scholar
  14. Bela Bollobás. Random graphs. Cambridge University Press, 2001. Google Scholar
  15. D. M. Cvetković, M. Doob, and H. Sachs. Spectra of graphs. Theory and applications. Leipzig: J. A. Barth Verlag, 3rd edition, 1995. Google Scholar
  16. Tomek Czajka and Gopal Pandurangan. Improved random graph isomorphism. Journal of Discrete Algorithms, 6:85-92, 2008. URL: https://doi.org/10.1016/J.JDA.2007.01.002.
  17. Jian Ding, Jeong Han Kim, Eyal Lubetzky, and Yuval Peres. Anatomy of young giant component in the random graph. Random Structures & Algorithms, 39(2):139-178, 2011. URL: https://doi.org/10.1002/RSA.20342.
  18. Jian Ding, Eyal Lubetzky, and Yuval Peres. Anatomy of the giant component: The strictly supercritical regime. European Journal of Combinatorics, 35:155-168, 2014. URL: https://doi.org/10.1016/J.EJC.2013.06.004.
  19. Paul Erdős and Alfred Rényi. On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci., 5:17-61, 1960. Google Scholar
  20. Paul Erdős and Alfred Rényi. Asymmetric graphs. Acta Math Acad Sci Hung, 14:295-315, 1963. Google Scholar
  21. Julia Gaudio, Miklós Z. Rácz, and Anirudh Sridhar. Average-case and smoothed analysis of graph isomorphism, 2023. URL: https://arxiv.org/abs/2211.16454.
  22. László Hegedüs and Benedek Nagy. On periodic properties of circular words. Discrete Mathematics, 339(3):1189-1197, 2016. URL: https://doi.org/10.1016/j.disc.2015.10.043.
  23. Neil Immerman and Eric Lander. Describing Graphs: A First-Order Approach to Graph Canonization, pages 59-81. Springer New York, 1990. Google Scholar
  24. Svante Janson, Tomasz Łuczak, and Andrzej Ruciński. Random graphs. John Wiley & Sons, 2000. Google Scholar
  25. Sandra Kiefer, Pascal Schweitzer, and Erkal Selman. Graphs identified by logics with counting. ACM Trans. Comput. Log., 23(1):1:1-1:31, 2022. URL: https://doi.org/10.1145/3417515.
  26. Andreas Krebs and Oleg Verbitsky. Universal covers, color refinement, and two-variable counting logic: Lower bounds for the depth. In 30th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS'15), pages 689-700. IEEE Computer Society, 2015. URL: https://doi.org/10.1109/LICS.2015.69.
  27. N. Linial and J. Mosheiff. On the rigidity of sparse random graphs. Journal of Graph Theory, 85(2):466-480, 2017. URL: https://doi.org/10.1002/JGT.22073.
  28. T. Łuczak. The automorphism group of random graphs with a given number of edges. Math Proc Camb Phil Soc, 104:441-449, 1988. Google Scholar
  29. Tomasz Łuczak. The phase transition in a random graph. In D. Miklós, V.T. Sós, and T. Szőnyi, editors, Combinatorics, Paul Erdős is Eighty, volume 2, pages 399-422. Bolyai Soc. Math. Stud. 2, J. Bolyai Math. Soc., Budapest, 1996. Google Scholar
  30. Tomasz Łuczak, Boris Pittel, and John C. Wierman. The structure of a random graph at the point of the phase transition. Transactions of the American Mathematical Society, 341(2):721-748, 1994. Google Scholar
  31. W. S. Massey. Algebraic topology: An introduction, volume 56 of Graduate Texts in Mathematics. Springer, 5th edition, 1981. Google Scholar
  32. Marc Noy, Vlady Ravelomanana, and Juanjo Rué. On the probability of planarity of a random graph near the critical point. Proc. Am. Math. Soc., 143(3):925-936, 2015. URL: https://doi.org/10.1090/S0002-9939-2014-12141-1.
  33. Oleg Verbitsky and Maksim Zhukovskii. Canonical labeling of sparse random graphs, 2024. URL: https://arxiv.org/abs/2409.18109.
  34. B.Yu. Weisfeiler and A.A. Leman. The reduction of a graph to canonical form and the algebra which appears therein. NTI, Ser. 2, 9:12-16, 1968. In Russian. English translation is available at URL: https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf.
  35. E. M. Wright. Asymmetric and symmetric graphs. Glasgow Math J, 15:69-73, 1974. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail