eng
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Leibniz International Proceedings in Informatics
1868-8969
2016-06-10
49:1
49:16
10.4230/LIPIcs.SoCG.2016.49
article
On the Complexity of Minimum-Link Path Problems
Kostitsyna, Irina
Löffler, Maarten
Polishchuk, Valentin
Staals, Frank
We revisit the minimum-link path problem: Given a polyhedral domain and two points in it, connect the points by a polygonal path with minimum number of edges. We consider settings where the min-link path's vertices or edges can be restricted to lie on the boundary of the domain, or can be in its interior. Our results include bit complexity bounds, a novel general hardness construction, and a polynomial-time approximation scheme. We fully characterize the situation in 2D, and provide first results in dimensions 3 and higher for several versions of the problem.
Concretely, our results resolve several open problems. We prove that computing the minimum-link diffuse reflection path, motivated by ray tracing in computer graphics, is NP-hard, even for two-dimensional polygonal domains with holes. This has remained an open problem [Ghosh et al. 2012] despite a large body of work on the topic. We also resolve the open problem from [Mitchell et al. 1992] mentioned in the handbook [Goodman and O'Rourke, 2004] (see Chapter 27.5, Open problem 3) and The Open Problems Project [Demaine et al. TOPP] (see Problem 22): "What is the complexity of the minimum-link path problem in 3-space?" Our results imply that the problem is NP-hard even on terrains (and hence, due to discreteness of the answer, there is no FPTAS unless P=NP), but admits a PTAS.
https://drops.dagstuhl.de/storage/00lipics/lipics-vol051-socg2016/LIPIcs.SoCG.2016.49/LIPIcs.SoCG.2016.49.pdf
minimum-linkpath
diffuse reflection
terrain
bit complexity
NP-hardness