Folding Free-Space Diagrams: Computing the Fréchet Distance between 1-Dimensional Curves (Multimedia Contribution)
By folding the free-space diagram for efficient preprocessing, we show that the Frechet distance between 1D curves can be computed in O(nk log n) time, assuming one curve has ply k.
Frechet distance
ply
k-packed curves
64:1-64:5
Multimedia Contribution
Kevin
Buchin
Kevin Buchin
Jinhee
Chun
Jinhee Chun
Maarten
Löffler
Maarten Löffler
Aleksandar
Markovic
Aleksandar Markovic
Wouter
Meulemans
Wouter Meulemans
Yoshio
Okamoto
Yoshio Okamoto
Taichi
Shiitada
Taichi Shiitada
10.4230/LIPIcs.SoCG.2017.64
H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves. IJCGA, 5(1-2):78-99, 1995.
K. Bringmann. Why walking the dog takes time: Fréchet distance has no strongly subquadratic algorithms unless SETH fails. In Proc. 55th FOCS, pages 661-670, 2014.
K. Bringmann and M. Künnemann. Improved approximation for Fréchet distance on c-packed curves matching conditional lower bounds. In Proc. 26th ISAAC, pages 517-528, 2015.
K. Bringmann and W. Mulzer. Approximability of the discrete fréchet distance. JoCG, 7(2):46-76, 2016.
K. Buchin, M. Buchin, W. Meulemans, and W. Mulzer. Four Soviets walk the dog: improved bounds for computing the Fréchet distance. DCG, 2017.
K. Buchin, M. Buchin, R. van Leusden, W. Meulemans, and W. Mulzer. Computing the Fréchet distance with a retractable leash. DCG, 56(2):315-336, 2016.
A. Driemel, S. Har-Peled, and C. Wenk. Approximating the Fréchet distance for realistic curves in near linear time. In Proc. 26th SoCG, pages 365-374, 2010.
Creative Commons Attribution 3.0 Unported license
https://creativecommons.org/licenses/by/3.0/legalcode