eng
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Leibniz International Proceedings in Informatics
1868-8969
2018-06-08
61:1
61:14
10.4230/LIPIcs.SoCG.2018.61
article
Table Based Detection of Degenerate Predicates in Free Space Construction
Milenkovic, Victor
Sacks, Elisha
Butt, Nabeel
The key to a robust and efficient implementation of a computational geometry algorithm is an efficient algorithm for detecting degenerate predicates. We study degeneracy detection in constructing the free space of a polyhedron that rotates around a fixed axis and translates freely relative to another polyhedron. The structure of the free space is determined by the signs of univariate polynomials, called angle polynomials, whose coefficients are polynomials in the coordinates of the vertices of the polyhedra. Every predicate is expressible as the sign of an angle polynomial f evaluated at a zero t of an angle polynomial g. A predicate is degenerate (the sign is zero) when t is a zero of a common factor of f and g. We present an efficient degeneracy detection algorithm based on a one-time factoring of every possible angle polynomial. Our algorithm is 3500 times faster than the standard algorithm based on greatest common divisor computation. It reduces the share of degeneracy detection in our free space computations from 90% to 0.5% of the running time.
https://drops.dagstuhl.de/storage/00lipics/lipics-vol099-socg2018/LIPIcs.SoCG.2018.61/LIPIcs.SoCG.2018.61.pdf
free space construction
degenerate predicates
robustness