Separator Theorem and Algorithms for Planar Hyperbolic Graphs

Authors Sándor Kisfaludi-Bak, Jana Masaříková, Erik Jan van Leeuwen, Bartosz Walczak, Karol Węgrzycki



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2024.67.pdf
  • Filesize: 0.92 MB
  • 17 pages

Document Identifiers

Author Details

Sándor Kisfaludi-Bak
  • Department of Computer Science, Aalto University, Espoo, Finland
Jana Masaříková
  • Institute of Informatics, University of Warsaw, Poland
Erik Jan van Leeuwen
  • Department of Information and Computing Sciences, Utrecht University, The Netherlands
Bartosz Walczak
  • Department of Theoretical Computer Science, Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland
Karol Węgrzycki
  • Saarland University, Saarbrücken, Germany
  • Max Planck Institute for Informatics, Saarbrücken, Germany

Acknowledgements

This research was partially carried out during the Parameterized Algorithms Retreat of the University of Warsaw, PARUW 2022, held in Będlewo in April 2022.

Cite AsGet BibTex

Sándor Kisfaludi-Bak, Jana Masaříková, Erik Jan van Leeuwen, Bartosz Walczak, and Karol Węgrzycki. Separator Theorem and Algorithms for Planar Hyperbolic Graphs. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 67:1-67:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.SoCG.2024.67

Abstract

The hyperbolicity of a graph, informally, measures how close a graph is (metrically) to a tree. Hence, it is intuitively similar to treewidth, but the measures are formally incomparable. Motivated by the broad study of algorithms and separators on planar graphs and their relation to treewidth, we initiate the study of planar graphs of bounded hyperbolicity. Our main technical contribution is a novel balanced separator theorem for planar δ-hyperbolic graphs that is substantially stronger than the classic planar separator theorem. For any fixed δ ⩾ 0, we can find a small balanced separator that induces either a single geodesic (shortest) path or a single geodesic cycle in the graph. An important advantage of our separator is that the union of our separator (vertex set Z) with any subset of the connected components of G - Z induces again a planar δ-hyperbolic graph, which would not be guaranteed with an arbitrary separator. Our construction runs in near-linear time and guarantees that the size of the separator is poly(δ) ⋅ log n. As an application of our separator theorem and its strong properties, we obtain two novel approximation schemes on planar δ-hyperbolic graphs. We prove that both Maximum Independent Set and the Traveling Salesperson problem have a near-linear time FPTAS for any constant δ, running in n polylog(n) ⋅ 2^𝒪(δ²) ⋅ ε^{-𝒪(δ)} time. We also show that our approximation scheme for Maximum Independent Set has essentially the best possible running time under the Exponential Time Hypothesis (ETH). This immediately follows from our third contribution: we prove that Maximum Independent Set has no n^{o(δ)}-time algorithm on planar δ-hyperbolic graphs, unless ETH fails.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • Hyperbolic metric
  • Planar Graphs
  • r-Division
  • Approximation Algorithms

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Muad Abu-Ata and Feodor F. Dragan. Metric tree-like structures in real-world networks: an empirical study. Networks, 67(1):49-68, 2016. URL: https://doi.org/10.1002/net.21631.
  2. Aaron B. Adcock, Blair D. Sullivan, and Michael W. Mahoney. Tree decompositions and social graphs. Internet Math., 12(5):315-361, 2016. URL: https://doi.org/10.1080/15427951.2016.1182952.
  3. Stefan Arnborg and Andrzej Proskurowski. Linear time algorithms for NP-hard problems restricted to partial k-trees. Discret. Appl. Math., 23(1):11-24, 1989. URL: https://doi.org/10.1016/0166-218X(89)90031-0.
  4. Brenda S. Baker. Approximation Algorithms for NP-Complete Problems on Planar Graphs. J. ACM, 41(1):153-180, 1994. URL: https://doi.org/10.1145/174644.174650.
  5. Reuven Bar-Yehuda, Danny Hermelin, and Dror Rawitz. Minimum vertex cover in rectangle graphs. Comput. Geom., 44(6-7):356-364, 2011. URL: https://doi.org/10.1016/j.comgeo.2011.03.002.
  6. Thomas Bläsius, Philipp Fischbeck, Tobias Friedrich, and Maximilian Katzmann. Solving Vertex Cover in Polynomial Time on Hyperbolic Random Graphs. In Christophe Paul and Markus Bläser, editors, 37th International Symposium on Theoretical Aspects of Computer Science, STACS 2020, March 10-13, 2020, Montpellier, France, volume 154 of LIPIcs, pages 25:1-25:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.STACS.2020.25.
  7. Thomas Bläsius, Tobias Friedrich, and Anton Krohmer. Hyperbolic Random Graphs: Separators and Treewidth. In Piotr Sankowski and Christos D. Zaroliagis, editors, 24th Annual European Symposium on Algorithms, ESA 2016, August 22-24, 2016, Aarhus, Denmark, volume 57 of LIPIcs, pages 15:1-15:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPIcs.ESA.2016.15.
  8. Thomas Bläsius, Tobias Friedrich, and Anton Krohmer. Cliques in Hyperbolic Random Graphs. Algorithmica, 80(8):2324-2344, 2018. URL: https://doi.org/10.1007/s00453-017-0323-3.
  9. Hans L. Bodlaender. A Tourist Guide through Treewidth. Acta Cybern., 11(1-2):1-21, 1993. URL: https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3417.
  10. Hans L. Bodlaender. A Linear-Time Algorithm for Finding Tree-Decompositions of Small Treewidth. SIAM J. Comput., 25(6):1305-1317, 1996. URL: https://doi.org/10.1137/S0097539793251219.
  11. Hans L. Bodlaender. A Partial k-Arboretum of Graphs with Bounded Treewidth. Theor. Comput. Sci., 209(1-2):1-45, 1998. URL: https://doi.org/10.1016/S0304-3975(97)00228-4.
  12. Hans L. Bodlaender. Discovering Treewidth. In Peter Vojtás, Mária Bieliková, Bernadette Charron-Bost, and Ondrej Sýkora, editors, SOFSEM 2005: Theory and Practice of Computer Science, 31st Conference on Current Trends in Theory and Practice of Computer Science, Liptovský Ján, Slovakia, January 22-28, 2005, Proceedings, volume 3381 of Lecture Notes in Computer Science, pages 1-16. Springer, 2005. URL: https://doi.org/10.1007/978-3-540-30577-4_1.
  13. Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. Inf. Comput., 243:86-111, 2015. URL: https://doi.org/10.1016/j.ic.2014.12.008.
  14. Mario Bonk and Oded Schramm. Embeddings of Gromov hyperbolic spaces. Selected Works of Oded Schramm, pages 243-284, 2011. Google Scholar
  15. Michele Borassi, Alessandro Chessa, and Guido Caldarelli. Hyperbolicity measures democracy in real-world networks. Phys. Rev. E, 92:032812, September 2015. URL: https://doi.org/10.1103/PhysRevE.92.032812.
  16. Michele Borassi, Pierluigi Crescenzi, and Michel Habib. Into the Square: On the Complexity of Some Quadratic-time Solvable Problems. In Pierluigi Crescenzi and Michele Loreti, editors, Proceedings of the 16th Italian Conference on Theoretical Computer Science, ICTCS 2015, Firenze, Italy, September 9-11, 2015, volume 322 of Electronic Notes in Theoretical Computer Science, pages 51-67. Elsevier, 2015. URL: https://doi.org/10.1016/j.entcs.2016.03.005.
  17. Károly Böröczky. Gömbkitöltések állandó görbületű terekben I. Matematikai Lapok (in Hungarian), 25(3-4):265-306, 1974. Google Scholar
  18. Glencora Borradaile, Hung Le, and Baigong Zheng. Engineering a PTAS for Minimum Feedback Vertex Set in Planar Graphs. In Ilias S. Kotsireas, Panos M. Pardalos, Konstantinos E. Parsopoulos, Dimitris Souravlias, and Arsenis Tsokas, editors, Analysis of Experimental Algorithms - Special Event, SEA² 2019, Kalamata, Greece, June 24-29, 2019, Revised Selected Papers, volume 11544 of Lecture Notes in Computer Science, pages 98-113. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-34029-2_7.
  19. Martin R. Bridson and André Haefliger. Metric spaces of non-positive curvature, volume 319 of Grundlehren der mathematischen Wissenschaften. Springer Berlin, Heidelberg, 1999. URL: https://doi.org/10.1007/978-3-662-12494-9.
  20. Wei Chen, Wenjie Fang, Guangda Hu, and Michael W. Mahoney. On the Hyperbolicity of Small-World and Tree-Like Random Graphs. In Kun-Mao Chao, Tsan-sheng Hsu, and Der-Tsai Lee, editors, Algorithms and Computation - 23rd International Symposium, ISAAC 2012, Taipei, Taiwan, December 19-21, 2012. Proceedings, volume 7676 of Lecture Notes in Computer Science, pages 278-288. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-35261-4_31.
  21. Victor Chepoi, Feodor F. Dragan, Bertrand Estellon, Michel Habib, and Yann Vaxès. Diameters, centers, and approximating trees of δ-hyperbolic geodesic spaces and graphs. In Monique Teillaud, editor, Proceedings of the 24th ACM Symposium on Computational Geometry, College Park, MD, USA, June 9-11, 2008, pages 59-68. ACM, 2008. URL: https://doi.org/10.1145/1377676.1377687.
  22. Victor Chepoi and Bertrand Estellon. Packing and Covering δ-Hyperbolic Spaces by Balls. In Moses Charikar, Klaus Jansen, Omer Reingold, and José D. P. Rolim, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 10th International Workshop, APPROX 2007, and 11th International Workshop, RANDOM 2007, Princeton, NJ, USA, August 20-22, 2007, Proceedings, volume 4627 of Lecture Notes in Computer Science, pages 59-73. Springer, 2007. URL: https://doi.org/10.1007/978-3-540-74208-1_5.
  23. Norishige Chiba, Takao Nishizeki, and Nobuji Saito. Applications of the Lipton and Tarjan’s planar separator theorem. Journal of Information Processing, 4(4):203-207, 1981. Google Scholar
  24. Nathann Cohen, David Coudert, Guillaume Ducoffe, and Aurélien Lancin. Applying clique-decomposition for computing Gromov hyperbolicity. Theor. Comput. Sci., 690:114-139, 2017. URL: https://doi.org/10.1016/j.tcs.2017.06.001.
  25. Nathann Cohen, David Coudert, and Aurélien Lancin. Exact and Approximate Algorithms for Computing the Hyperbolicity of Large-Scale Graphs. Technical report, INRIA, September 2012. Google Scholar
  26. Vincent Cohen-Addad, Arnold Filtser, Philip N. Klein, and Hung Le. On Light Spanners, Low-treewidth Embeddings and Efficient Traversing in Minor-free Graphs. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 589-600. IEEE, 2020. URL: https://doi.org/10.1109/FOCS46700.2020.00061.
  27. David Coudert, Guillaume Ducoffe, and Alexandru Popa. Fully Polynomial FPT Algorithms for Some Classes of Bounded Clique-width Graphs. ACM Trans. Algorithms, 15(3):33:1-33:57, 2019. URL: https://doi.org/10.1145/3310228.
  28. Bruno Courcelle. The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs. Inf. Comput., 85(1):12-75, 1990. URL: https://doi.org/10.1016/0890-5401(90)90043-H.
  29. Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michał Pilipczuk, Johan M. M. van Rooij, and Jakub Onufry Wojtaszczyk. Solving Connectivity Problems Parameterized by Treewidth in Single Exponential Time. ACM Trans. Algorithms, 18(2):17:1-17:31, 2022. URL: https://doi.org/10.1145/3506707.
  30. Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, Dániel Marx, and Tom C. van der Zanden. A Framework for Exponential-Time-Hypothesis-Tight Algorithms and Lower Bounds in Geometric Intersection Graphs. SIAM J. Comput., 49(6):1291-1331, 2020. URL: https://doi.org/10.1137/20M1320870.
  31. Fabien de Montgolfier, Mauricio Soto, and Laurent Viennot. Treewidth and Hyperbolicity of the Internet. In Proceedings of The Tenth IEEE International Symposium on Networking Computing and Applications, NCA 2011, August 25-27, 2011, Cambridge, Massachusetts, USA, pages 25-32. IEEE Computer Society, 2011. URL: https://doi.org/10.1109/NCA.2011.11.
  32. Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos. Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs. J. ACM, 52(6):866-893, 2005. URL: https://doi.org/10.1145/1101821.1101823.
  33. Erik D. Demaine and Mohammad Taghi Hajiaghayi. Bidimensionality: new connections between FPT algorithms and PTASs. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, Vancouver, British Columbia, Canada, January 23-25, 2005, pages 590-601. SIAM, 2005. URL: http://dl.acm.org/citation.cfm?id=1070432.1070514.
  34. Youssou Dieng. Décomposition arborescente des graphes planaires et routage compact. PhD thesis, L'Université Bordeaux I, 2009. Google Scholar
  35. Youssou Dieng and Cyril Gavoille. On the Tree-Width of Planar Graphs. Electron. Notes Discret. Math., 34:593-596, 2009. URL: https://doi.org/10.1016/j.endm.2009.07.099.
  36. Frederic Dorn, Eelko Penninkx, Hans L. Bodlaender, and Fedor V. Fomin. Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Decompositions. Algorithmica, 58(3):790-810, 2010. URL: https://doi.org/10.1007/s00453-009-9296-1.
  37. Andreas Emil Feldmann, Karthik C. S., Euiwoong Lee, and Pasin Manurangsi. A Survey on Approximation in Parameterized Complexity: Hardness and Algorithms. Algorithms, 13(6):146, 2020. URL: https://doi.org/10.3390/a13060146.
  38. Till Fluschnik, Christian Komusiewicz, George B. Mertzios, André Nichterlein, Rolf Niedermeier, and Nimrod Talmon. When Can Graph Hyperbolicity be Computed in Linear Time? Algorithmica, 81(5):2016-2045, 2019. URL: https://doi.org/10.1007/s00453-018-0522-6.
  39. Fedor V. Fomin, Stefan Kratsch, and Erik Jan van Leeuwen, editors. Treewidth, Kernels, and Algorithms - Essays Dedicated to Hans L. Bodlaender on the Occasion of His 60th Birthday, volume 12160 of Lecture Notes in Computer Science. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-42071-0.
  40. Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Excluded Grid Minors and Efficient Polynomial-Time Approximation Schemes. J. ACM, 65(2):10:1-10:44, 2018. URL: https://doi.org/10.1145/3154833.
  41. Hervé Fournier, Anas Ismail, and Antoine Vigneron. Computing the Gromov hyperbolicity of a discrete metric space. Inf. Process. Lett., 115(6-8):576-579, 2015. URL: https://doi.org/10.1016/j.ipl.2015.02.002.
  42. Tobias Friedrich. From Graph Theory to Network Science: The Natural Emergence of Hyperbolicity (Tutorial). In Rolf Niedermeier and Christophe Paul, editors, 36th International Symposium on Theoretical Aspects of Computer Science, STACS 2019, March 13-16, 2019, Berlin, Germany, volume 126 of LIPIcs, pages 5:1-5:9. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.STACS.2019.5.
  43. Yong Gao. Treewidth of erdős-rényi random graphs, random intersection graphs, and scale-free random graphs. Discret. Appl. Math., 160(4-5):566-578, 2012. URL: https://doi.org/10.1016/j.dam.2011.10.013.
  44. Michelangelo Grigni, Elias Koutsoupias, and Christos H. Papadimitriou. An Approximation Scheme for Planar Graph TSP. In 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, USA, 23-25 October 1995, pages 640-645. IEEE Computer Society, 1995. URL: https://doi.org/10.1109/SFCS.1995.492665.
  45. Mikhael Gromov. Hyperbolic groups. In Essays in group theory, pages 75-263. Springer, 1987. Google Scholar
  46. Qian-Ping Gu and Gengchun Xu. Near-linear time constant-factor approximation algorithm for branch-decomposition of planar graphs. Discret. Appl. Math., 257:186-205, 2019. URL: https://doi.org/10.1016/j.dam.2018.08.027.
  47. Sariel Har-Peled. Approximately: Independence Implies Vertex Cover. Note, Retrieved July 12, 2023, 2020. URL: https://sarielhp.org/research/papers/20/indep_set_to_vc/indep_set_to_vc.pdf.
  48. Petr Hlinený, Sang-il Oum, Detlef Seese, and Georg Gottlob. Width Parameters Beyond Tree-width and their Applications. Comput. J., 51(3):326-362, 2008. URL: https://doi.org/10.1093/comjnl/bxm052.
  49. Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J. Comput. Syst. Sci., 62(2):367-375, 2001. URL: https://doi.org/10.1006/jcss.2000.1727.
  50. Frank Kammer and Torsten Tholey. Approximate tree decompositions of planar graphs in linear time. Theor. Comput. Sci., 645:60-90, 2016. URL: https://doi.org/10.1016/j.tcs.2016.06.040.
  51. Sándor Kisfaludi-Bak. Hyperbolic intersection graphs and (quasi)-polynomial time. CoRR, abs/1812.03960, 2018. URL: https://arxiv.org/abs/1812.03960.
  52. Sándor Kisfaludi-Bak. Hyperbolic intersection graphs and (quasi)-polynomial time. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, pages 1621-1638. SIAM, 2020. URL: https://doi.org/10.1137/1.9781611975994.100.
  53. Sándor Kisfaludi-Bak. A quasi-polynomial algorithm for well-spaced hyperbolic TSP. J. Comput. Geom., 12(2):25-54, 2021. URL: https://doi.org/10.20382/jocg.v12i2a3.
  54. Sándor Kisfaludi-Bak, Jana Masarikova, Erik Jan van Leeuwen, Bartosz Walczak, and Karol Węgrzycki. Separator theorem and algorithms for planar hyperbolic graphs. Arxiv, abs/2310.11283, 2023. URL: https://doi.org/10.48550/ARXIV.2310.11283.
  55. Philip N. Klein. A Linear-Time Approximation Scheme for TSP in Undirected Planar Graphs with Edge-Weights. SIAM J. Comput., 37(6):1926-1952, 2008. URL: https://doi.org/10.1137/060649562.
  56. Jon M. Kleinberg and Amit Kumar. Wavelength Conversion in Optical Networks. J. Algorithms, 38(1):25-50, 2001. URL: https://doi.org/10.1006/jagm.2000.1137.
  57. Eryk Kopczyński. Hyperbolic minesweeper is in p. In 10th International Conference on Fun with Algorithms (FUN 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020. Google Scholar
  58. Robert Krauthgamer and James R. Lee. Algorithms on negatively curved spaces. In 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), 21-24 October 2006, Berkeley, California, USA, Proceedings, pages 119-132. IEEE Computer Society, 2006. URL: https://doi.org/10.1109/FOCS.2006.9.
  59. Steffen Lauritzen and David J. Spiegelhalter. Local computations with probabilities on graphical structures and their applications to expert systems. Journal of the Royal Statistical Society, Series B, 50(2):157-224, 1988. Google Scholar
  60. Hung Le. A PTAS for subset TSP in minor-free graphs. CoRR, abs/1804.01588, 2018. URL: https://arxiv.org/abs/1804.01588.
  61. Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters. Internet Math., 6(1):29-123, 2009. URL: https://doi.org/10.1080/15427951.2009.10129177.
  62. Richard J. Lipton and Robert E. Tarjan. A Separator Theorem for Planar Graphs. SIAM Journal of Applied Mathematics, 36:177-189, 1979. Google Scholar
  63. Richard J. Lipton and Robert Endre Tarjan. Applications of a Planar Separator Theorem. SIAM J. Comput., 9(3):615-627, 1980. URL: https://doi.org/10.1137/0209046.
  64. Silviu Maniu, Pierre Senellart, and Suraj Jog. An experimental study of the treewidth of real-world graph data. In Pablo Barceló and Marco Calautti, editors, 22nd International Conference on Database Theory, ICDT 2019, March 26-28, 2019, Lisbon, Portugal, volume 127 of LIPIcs, pages 12:1-12:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.ICDT.2019.12.
  65. Dániel Marx. On the Optimality of Planar and Geometric Approximation Schemes. In 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), October 20-23, 2007, Providence, RI, USA, Proceedings, pages 338-348. IEEE Computer Society, 2007. URL: https://doi.org/10.1109/FOCS.2007.50.
  66. Onuttom Narayan and Iraj Saniee. Large-scale curvature of networks. Phys. Rev. E, 84:066108, December 2011. URL: https://doi.org/10.1103/PhysRevE.84.066108.
  67. Svatopluk Poljak. A note on stable sets and colorings of graphs. Commentationes Mathematicae Universitatis Carolinae, 15:307-309, 1974. Google Scholar
  68. Neil Robertson and Paul D. Seymour. Graph Minors. II. Algorithmic Aspects of Tree-Width. J. Algorithms, 7(3):309-322, 1986. URL: https://doi.org/10.1016/0196-6774(86)90023-4.
  69. Neil Robertson and Paul D. Seymour. Graph minors. V. Excluding a planar graph. J. Comb. Theory, Ser. B, 41(1):92-114, 1986. URL: https://doi.org/10.1016/0095-8956(86)90030-4.
  70. Yuval Shavitt and Tomer Tankel. Hyperbolic embedding of internet graph for distance estimation and overlay construction. IEEE/ACM Trans. Netw., 16(1):25-36, 2008. URL: https://doi.org/10.1145/1373452.1373455.
  71. Martin Vatshelle. New Width Parameters of Graphs. PhD thesis, University of Bergen, Norway, 2012. Google Scholar