Given a metric space (X,d_X), a (β,s,Δ)-sparse cover is a collection of clusters 𝒞 ⊆ P(X) with diameter at most Δ, such that for every point x ∈ X, the ball B_X(x,Δ/β) is fully contained in some cluster C ∈ 𝒞, and x belongs to at most s clusters in 𝒞. Our main contribution is to show that the shortest path metric of every K_r-minor free graphs admits (O(r),O(r²),Δ)-sparse cover, and for every ε > 0, (4+ε,O(1/ε)^r,Δ)-sparse cover (for arbitrary Δ > 0). We then use this sparse cover to show that every K_r-minor free graph embeds into 𝓁_∞^{Õ(1/ε)^{r+1}⋅log n} with distortion 3+ε (resp. into 𝓁_∞^{Õ(r²)⋅log n} with distortion O(r)). Further, among other applications, this sparse cover immediately implies an algorithm for the oblivious buy-at-bulk problem in fixed minor free graphs with the tight approximation factor O(log n) (previously nothing beyond general graphs was known).
@InProceedings{filtser:LIPIcs.SoCG.2025.49, author = {Filtser, Arnold}, title = {{On Sparse Covers of Minor Free Graphs, Low Dimensional Metric Embeddings, and Other Applications}}, booktitle = {41st International Symposium on Computational Geometry (SoCG 2025)}, pages = {49:1--49:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-370-6}, ISSN = {1868-8969}, year = {2025}, volume = {332}, editor = {Aichholzer, Oswin and Wang, Haitao}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.49}, URN = {urn:nbn:de:0030-drops-232015}, doi = {10.4230/LIPIcs.SoCG.2025.49}, annote = {Keywords: Sparse cover, minor free graphs, metric embeddings, 𝓁\underline∞, oblivious buy-at-bulk} }
Feedback for Dagstuhl Publishing